ps_plotter/tankPlot.py
Luke fe6d3436e9 Refactored to try to split up the defaults from the main code
This is going to get ugly fast if I don't keep on top of it.
2018-07-18 11:46:46 -07:00

92 lines
3 KiB
Python

#!/usr/bin/env python3
import numpy as np
from matplotlib import rcParams, pyplot as pp
import LPRDefaultPlotting
import sys
sys.path.append("./pySmithPlot")
import smithplot
from smithplot import SmithAxes
################################################################################
# Define my helper functions.
def dB20(volt_tf):
"""Describe signal gain of a transfer function in dB (i.e. 20log(x))"""
return 20*np.log10(np.abs(volt_tf))
def ang(volt_tf):
"""Describe phase of a transfer function in degrees. Not unwrapped."""
return 180/np.pi*np.angle(volt_tf)
def ang_unwrap(volt_tf):
"""Describe phase of a transfer function in degrees. With unwrapping."""
return 180/np.pi*np.unwrap(np.angle(volt_tf))
def dB10(pwr_tf):
"""Describe power gain of a transfer function in dB (i.e. 10log(x))"""
return 10*np.log10(np.abs(pwr_tf))
################################################################################
# Override the defaults for this script
rcParams['figure.figsize'] = [10,7]
default_window_position='+20+80'
################################################################################
# Operating Enviornment (i.e. circuit parameters)
from TankGlobals import *
################################################################################
# Now generate the sweep of resonance tuning (gamma, and capacitance)
gamma_swp = np.linspace(-gamma,gamma,gamma_sweep_steps);
# compute correction factor for g1 that will produce common gain at f0
g1_swp = np.sqrt( g1*g1 - (gamma_swp*gamma_swp) * c1/l1 )
# and compute how much of a negative gm this requres, and it's relative
# proportion to the gm of the assumed main amplifier gm.
g1_boost = (g1_swp - g1)
g1_ratio = -g1_boost / gm1
c1_swp = c1 * (1 + gamma_swp)
## Report System Descrption
print(' L1 = %.3fpH, C1 = %.3ffF' % (1e3*l1, 1e6*c1))
print(' Rp = %.3f Ohm' % (1/g1))
print(' Max G1 boost %.2fmS (%.1f%% of gm1)' % \
(1e3*np.max(np.abs(g1_boost)), 100*np.max(g1_ratio)))
h = pp.figure()
mgr = pp.get_current_fig_manager()
ax1 = h.add_subplot(2,2,1, projection='smith')
ax2 = h.add_subplot(2,2,3, projection='polar')
ax3 = h.add_subplot(2,2,2)
ax4 = h.add_subplot(2,2,4)
for itune,gamma_tune in enumerate(gamma_swp):
c1_tune = c1_swp[itune]
g1_tune = g1_swp[itune]
K = np.sqrt(c1/l1)/g1_tune
y_tank = g1_tune + jw*c1_tune + 1/(jw * l1)
#print(1/np.mean(np.abs(y_tank)))
ax1.plot(y_tank, datatype=SmithAxes.Y_PARAMETER, marker="None")
tf = gm1 / g1_tune * \
1j*(1+delta) / \
( 1j*(1+delta) + K*(1 - (1+gamma_tune)*np.power(1+delta,2)) )
ax2.plot(np.angle(tf), dB20(tf))
ax3.plot(f,dB20(tf))
ax4.plot(f,ang(tf))
################################################################################
ax1.set_title('Tank Impedance')
ax2.set_title('Transfer Function')
ax3.set_title('TF Gain')
ax3.set_ylabel('Gain (dB)')
ax4.set_title('TF Phase')
ax4.set_ylabel('Phase (deg)')
for ax_T in [ax3, ax4]:
ax_T.grid()
ax_T.set_xlabel('Freq (GHz)')
ax_T.set_xlim(( np.min(f), np.max(f) ))
h.tight_layout()
mgr.window.geometry(default_window_position)
h.show()