Refactored to try to split up the defaults from the main code
This is going to get ugly fast if I don't keep on top of it.
This commit is contained in:
parent
855e35367d
commit
fe6d3436e9
4 changed files with 198 additions and 52 deletions
101
.gitignore
vendored
Normal file
101
.gitignore
vendored
Normal file
|
@ -0,0 +1,101 @@
|
|||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# Distribution / packaging
|
||||
.Python
|
||||
env/
|
||||
build/
|
||||
develop-eggs/
|
||||
dist/
|
||||
downloads/
|
||||
eggs/
|
||||
.eggs/
|
||||
lib/
|
||||
lib64/
|
||||
parts/
|
||||
sdist/
|
||||
var/
|
||||
wheels/
|
||||
*.egg-info/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
|
||||
# PyInstaller
|
||||
# Usually these files are written by a python script from a template
|
||||
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||
*.manifest
|
||||
*.spec
|
||||
|
||||
# Installer logs
|
||||
pip-log.txt
|
||||
pip-delete-this-directory.txt
|
||||
|
||||
# Unit test / coverage reports
|
||||
htmlcov/
|
||||
.tox/
|
||||
.coverage
|
||||
.coverage.*
|
||||
.cache
|
||||
nosetests.xml
|
||||
coverage.xml
|
||||
*.cover
|
||||
.hypothesis/
|
||||
|
||||
# Translations
|
||||
*.mo
|
||||
*.pot
|
||||
|
||||
# Django stuff:
|
||||
*.log
|
||||
local_settings.py
|
||||
|
||||
# Flask stuff:
|
||||
instance/
|
||||
.webassets-cache
|
||||
|
||||
# Scrapy stuff:
|
||||
.scrapy
|
||||
|
||||
# Sphinx documentation
|
||||
docs/_build/
|
||||
|
||||
# PyBuilder
|
||||
target/
|
||||
|
||||
# Jupyter Notebook
|
||||
.ipynb_checkpoints
|
||||
|
||||
# pyenv
|
||||
.python-version
|
||||
|
||||
# celery beat schedule file
|
||||
celerybeat-schedule
|
||||
|
||||
# SageMath parsed files
|
||||
*.sage.py
|
||||
|
||||
# dotenv
|
||||
.env
|
||||
|
||||
# virtualenv
|
||||
.venv
|
||||
venv/
|
||||
ENV/
|
||||
|
||||
# Spyder project settings
|
||||
.spyderproject
|
||||
.spyproject
|
||||
|
||||
# Rope project settings
|
||||
.ropeproject
|
||||
|
||||
# mkdocs documentation
|
||||
/site
|
||||
|
||||
# mypy
|
||||
.mypy_cache/
|
20
LPRDefaultPlotting.py
Normal file
20
LPRDefaultPlotting.py
Normal file
|
@ -0,0 +1,20 @@
|
|||
#!/usr/bin/env python3
|
||||
################################################################################
|
||||
# Define the prefered plotting defaults.
|
||||
# These generally translate to how I want stuff to show up in IEEE papers.
|
||||
# Note that when I do my debugging, I override figure.figsize in my testing
|
||||
# enviornment.
|
||||
################################################################################
|
||||
|
||||
from matplotlib import rcParams, pyplot as pp
|
||||
|
||||
rcParams['grid.alpha'] = 0.7
|
||||
rcParams['grid.linestyle'] = ':'
|
||||
rcParams['font.family'] = ['serif']
|
||||
rcParams['font.size'] = 9.0
|
||||
rcParams['mathtext.fontset'] = 'dejavuserif'
|
||||
rcParams['mathtext.it'] = 'serif:italic'
|
||||
rcParams['mathtext.bf'] = 'serif:bold'
|
||||
rcParams['mathtext.sf'] = 'serif'
|
||||
rcParams['mathtext.tt'] = 'monospace'
|
||||
|
49
TankGlobals.py
Normal file
49
TankGlobals.py
Normal file
|
@ -0,0 +1,49 @@
|
|||
#!/usr/bin/env python3
|
||||
import numpy as np
|
||||
|
||||
################################################################################
|
||||
# Operating Enviornment
|
||||
#####
|
||||
f0 = 28
|
||||
bw0 = 6.5 # assumed tuning range (GHz)
|
||||
bw_plt = 2 # Plotting range (GHz)
|
||||
fbw = bw0/f0 # fractional bandwidth
|
||||
|
||||
frequency_sweep_steps = 101
|
||||
gamma_sweep_steps = 15
|
||||
|
||||
gamma = 1 - np.power(f0 / (f0 + bw0/2),2)
|
||||
gamma_limit_ratio = 0.99 # how close gamma can get to theoretical extreme
|
||||
|
||||
# Configuration Of Hardware
|
||||
#####
|
||||
q1_L = 10
|
||||
q1_C = 10
|
||||
l1 = 100e-3 # nH
|
||||
gm1 = 25e-3 # S
|
||||
|
||||
# Compute frequency sweep
|
||||
#####
|
||||
w0 = f0*2*np.pi
|
||||
fbw_plt = bw_plt/f0
|
||||
delta = np.linspace(-fbw_plt/2,fbw_plt/2,frequency_sweep_steps)
|
||||
w = w0*(1+delta)
|
||||
f = f0*(1+delta)
|
||||
jw = 1j*w
|
||||
|
||||
##################
|
||||
# Compute system
|
||||
#####
|
||||
c1 = 1/(w0*w0*l1)
|
||||
g1_L = 1 / (q1_L*w0*l1)
|
||||
g1_C = w0 * c1 / q1_C
|
||||
g1 = g1_L + g1_C
|
||||
|
||||
# Verify gamma is valid
|
||||
#####
|
||||
gamma_max = g1 * np.sqrt(l1/c1)
|
||||
if gamma > (gamma_limit_ratio * gamma_max):
|
||||
print("==> WARN: Gamma to large, reset to %.3f (was %.3f) <==" % \
|
||||
(gamma_max_cap*gamma_max, gamma))
|
||||
gamma = gamma_max_cap*gamma_max
|
||||
|
80
tankPlot.py
80
tankPlot.py
|
@ -1,60 +1,42 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
import numpy as np
|
||||
from matplotlib import rcParams, pyplot as pp
|
||||
|
||||
rcParams['figure.figsize'] = [10,7]
|
||||
default_window_position='+20+80'
|
||||
from matplotlib import rcParams, pyplot as pp
|
||||
import LPRDefaultPlotting
|
||||
|
||||
import sys
|
||||
sys.path.append("./pySmithPlot")
|
||||
import smithplot
|
||||
from smithplot import SmithAxes
|
||||
|
||||
################################################################################
|
||||
# Operating Enviornment
|
||||
#####
|
||||
f0 = 28
|
||||
bw0 = 6.5 # assumed tuning range (GHz)
|
||||
bw_plt = 1 # Plotting range (GHz)
|
||||
fbw = bw0/f0 # fractional bandwidth
|
||||
# Define my helper functions.
|
||||
def dB20(volt_tf):
|
||||
"""Describe signal gain of a transfer function in dB (i.e. 20log(x))"""
|
||||
return 20*np.log10(np.abs(volt_tf))
|
||||
def ang(volt_tf):
|
||||
"""Describe phase of a transfer function in degrees. Not unwrapped."""
|
||||
return 180/np.pi*np.angle(volt_tf)
|
||||
def ang_unwrap(volt_tf):
|
||||
"""Describe phase of a transfer function in degrees. With unwrapping."""
|
||||
return 180/np.pi*np.unwrap(np.angle(volt_tf))
|
||||
def dB10(pwr_tf):
|
||||
"""Describe power gain of a transfer function in dB (i.e. 10log(x))"""
|
||||
return 10*np.log10(np.abs(pwr_tf))
|
||||
|
||||
frequency_sweep_steps = 101
|
||||
gamma_sweep_steps = 15
|
||||
|
||||
gamma = 1 - np.power(f0 / (f0 + bw0/2),2)
|
||||
gamma_limit_ratio = 0.99 # how close gamma can get to theoretical extreme
|
||||
################################################################################
|
||||
# Override the defaults for this script
|
||||
rcParams['figure.figsize'] = [10,7]
|
||||
default_window_position='+20+80'
|
||||
|
||||
# Configuration Of Hardware
|
||||
#####
|
||||
q1_L = 10
|
||||
q1_C = 10
|
||||
l1 = 100e-3 # nH
|
||||
gm1 = 25e-3 # S
|
||||
################################################################################
|
||||
# Operating Enviornment (i.e. circuit parameters)
|
||||
from TankGlobals import *
|
||||
|
||||
# Compute frequency sweep
|
||||
#####
|
||||
w0 = f0*2*np.pi
|
||||
fbw_plt = bw_plt/f0
|
||||
delta = np.linspace(-fbw_plt/2,fbw_plt/2,frequency_sweep_steps)
|
||||
w = w0*(1+delta)
|
||||
f = f0*(1+delta)
|
||||
jw = 1j*w
|
||||
|
||||
##################
|
||||
# Compute system
|
||||
#####
|
||||
c1 = 1/(w0*w0*l1)
|
||||
g1_L = 1 / (q1_L*w0*l1)
|
||||
g1_C = w0 * c1 / q1_C
|
||||
g1 = g1_L + g1_C
|
||||
|
||||
# Verify gamma is valid
|
||||
#####
|
||||
gamma_max = g1 * np.sqrt(l1/c1)
|
||||
if gamma > (gamma_limit_ratio * gamma_max):
|
||||
print("==> WARN: Gamma to large, reset to %.3f (was %.3f) <==" % \
|
||||
(gamma_max_cap*gamma_max, gamma))
|
||||
gamma = gamma_max_cap*gamma_max
|
||||
################################################################################
|
||||
# Now generate the sweep of resonance tuning (gamma, and capacitance)
|
||||
|
||||
gamma_swp = np.linspace(-gamma,gamma,gamma_sweep_steps);
|
||||
# compute correction factor for g1 that will produce common gain at f0
|
||||
|
@ -72,12 +54,6 @@ print(' Rp = %.3f Ohm' % (1/g1))
|
|||
print(' Max G1 boost %.2fmS (%.1f%% of gm1)' % \
|
||||
(1e3*np.max(np.abs(g1_boost)), 100*np.max(g1_ratio)))
|
||||
|
||||
def db(volt_tf):
|
||||
return 20*np.log10(np.abs(volt_tf))
|
||||
def ang(volt_tf):
|
||||
return 180/np.pi*np.angle(volt_tf)
|
||||
|
||||
#y_tank=np.zeros((len(delta),len(gamma_swp)))
|
||||
h = pp.figure()
|
||||
mgr = pp.get_current_fig_manager()
|
||||
ax1 = h.add_subplot(2,2,1, projection='smith')
|
||||
|
@ -94,8 +70,8 @@ for itune,gamma_tune in enumerate(gamma_swp):
|
|||
tf = gm1 / g1_tune * \
|
||||
1j*(1+delta) / \
|
||||
( 1j*(1+delta) + K*(1 - (1+gamma_tune)*np.power(1+delta,2)) )
|
||||
ax2.plot(np.angle(tf), db(tf))
|
||||
ax3.plot(f,db(tf))
|
||||
ax2.plot(np.angle(tf), dB20(tf))
|
||||
ax3.plot(f,dB20(tf))
|
||||
ax4.plot(f,ang(tf))
|
||||
|
||||
################################################################################
|
||||
|
@ -105,7 +81,7 @@ ax2.set_title('Transfer Function')
|
|||
ax3.set_title('TF Gain')
|
||||
ax3.set_ylabel('Gain (dB)')
|
||||
ax4.set_title('TF Phase')
|
||||
ax3.set_ylabel('Phase (deg)')
|
||||
ax4.set_ylabel('Phase (deg)')
|
||||
for ax_T in [ax3, ax4]:
|
||||
ax_T.grid()
|
||||
ax_T.set_xlabel('Freq (GHz)')
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue