ps_plotter/tankComputers.py

65 lines
2.2 KiB
Python

#!/usr/bin/env python3
import numpy as np
################################################################################
# Define my helper functions.
def dB20(volt_tf):
"""Describe signal gain of a transfer function in dB (i.e. 20log(x))"""
return 20*np.log10(np.abs(volt_tf))
def ang(volt_tf):
"""Describe phase of a transfer function in degrees. Not unwrapped."""
return 180/np.pi*np.angle(volt_tf)
def ang_unwrap(volt_tf):
"""Describe phase of a transfer function in degrees. With unwrapping."""
return 180/np.pi*np.unwrap(np.angle(volt_tf))
def dB10(pwr_tf):
"""Describe power gain of a transfer function in dB (i.e. 10log(x))"""
return 10*np.log10(np.abs(pwr_tf))
def dB2Vlt(dB20_value):
return np.power(10,dB20_value/20)
def wrap_rads(angles):
return np.mod(angles+np.pi,2*np.pi)-np.pi
def atand(x):
return 180/np.pi*np.arctan(x)
def setLimitsTicks(ax, data, steps):
targs = np.array([1, 2, 4, 5, 10, 20, 30, 50, 60, 100, 250, 1000])
lo = np.min(data)
hi = np.max(data)
rg = hi-lo
step_size = rg / steps
step_size = np.select(targs >= step_size, targs)
lo = np.floor(lo / step_size)*step_size
hi = np.ceil(hi / step_size)*step_size
marks = np.arange(0,steps+1)*step_size + lo
ax.set_ylim((lo,hi))
ax.set_yticks(marks)
def rms_v_bw(err_sig, bandwidth_scale=1):
"""compute the rms vs bandwidth assuming a fixed center frequency"""
# First compute the error power
err_pwr = np.power(np.abs(err_sig),2)
steps = len(err_pwr)
isodd = True if steps%2 != 0 else False
# We want to generate the midpoint to the left, and midpoint to the right
# as two distinct sets.
pt_rhs_start = int(np.floor(steps/2))
pt_lhs_stop = int(np.ceil(steps/2))
folded = err_pwr[pt_rhs_start:] + np.flip(err_pwr[:pt_lhs_stop],0)
# Now, we MIGHT have double counted the mid point
# if the length is odd, correct for that
if isodd: folded[0]*=0.5
# Now we need an array that describes the number of points used to get here.
# this one turns out to be pretty easy.
frac_step = np.arange(int(not isodd),steps,2)/(steps-1)
ind = 2*np.arange(0,frac_step.shape[0])+1+int(not isodd)
# Now actually compute the RMS values. First do the running sum
rms = np.sqrt(np.cumsum(folded,0) / (ind*np.ones((folded.shape[1],1))).T )
return (frac_step*bandwidth_scale, rms)