Continued refactoring, split up plotting statements.
This commit is contained in:
parent
539c2f7481
commit
e3637a7fc6
4 changed files with 218 additions and 69 deletions
|
@ -7,14 +7,33 @@
|
|||
################################################################################
|
||||
|
||||
from matplotlib import rcParams, pyplot as pp
|
||||
from cycler import cycler
|
||||
|
||||
rcParams['grid.alpha'] = 0.7
|
||||
rcParams['grid.linestyle'] = ':'
|
||||
rcParams['font.family'] = ['serif']
|
||||
rcParams['font.size'] = 9.0
|
||||
rcParams['font.size'] = 8.0
|
||||
rcParams['mathtext.fontset'] = 'dejavuserif'
|
||||
rcParams['mathtext.it'] = 'serif:italic'
|
||||
rcParams['mathtext.bf'] = 'serif:bold'
|
||||
rcParams['mathtext.sf'] = 'serif'
|
||||
rcParams['mathtext.tt'] = 'monospace'
|
||||
|
||||
# axes.prop_cycle
|
||||
COLOR_CYCLE_LIST = [
|
||||
[0, 0.4470, 0.7410],
|
||||
[0.8500, 0.3250, 0.0980],
|
||||
[0.4940, 0.1840, 0.5560],
|
||||
[0.4660, 0.6740, 0.1880],
|
||||
[0.3010, 0.7450, 0.9330],
|
||||
[0.6350, 0.0780, 0.1840],
|
||||
[0.9290, 0.6940, 0.1250],
|
||||
[1, 0, 1]]#,
|
||||
# [0, 1, 1],
|
||||
# [1, 0, 0],
|
||||
# [0, 1, 0]]
|
||||
|
||||
rcParams['axes.prop_cycle'] = (cycler('linestyle',['-','--'])*cycler(color=COLOR_CYCLE_LIST))
|
||||
|
||||
for tri in COLOR_CYCLE_LIST:
|
||||
color = '0x' + ''.join([ "%02x" % int(255*x) for x in tri])
|
||||
|
|
|
@ -15,11 +15,14 @@ def g1_map_default(system):
|
|||
# Operating Enviornment
|
||||
#####
|
||||
class ampSystem:
|
||||
f0 = 28
|
||||
bw0 = 8
|
||||
bw_plt = 0.5
|
||||
"""define global (hardware descriptive) variables for use in our system."""
|
||||
def __init__(self, quiet=False):
|
||||
self.f0 = 28 # design frequency (GHz)
|
||||
self.bw0 = 8 # assumed extreme tuning range (GHz)
|
||||
self.bw_plt = 4 # Plotting range (GHz)
|
||||
self.f0 = self.__class__.f0 # design frequency (GHz)
|
||||
self.bw0 = self.__class__.bw0 # assumed extreme tuning range (GHz)
|
||||
self.bw_plt = self.__class__.bw_plt # Plotting range (GHz)
|
||||
|
||||
# Configuration Of Hardware
|
||||
#####
|
||||
|
@ -46,9 +49,6 @@ class ampSystem:
|
|||
@property
|
||||
def fbw(self): # fractional bandwidth
|
||||
return self.bw0/self.f0
|
||||
@property
|
||||
def phase_max(self):
|
||||
return np.pi/2 * (1 - 1/self.gamma_len)
|
||||
|
||||
# Compute system
|
||||
#####
|
||||
|
@ -65,6 +65,9 @@ class ampSystem:
|
|||
return np.sqrt(self.c1/self.l1)/self.g1
|
||||
|
||||
@property
|
||||
def phase_max(self):
|
||||
return np.pi/2 * (1 - 1/self.gamma_len)
|
||||
@property
|
||||
def gamma_len(self):
|
||||
return self._gamma_steps
|
||||
|
||||
|
@ -160,5 +163,58 @@ class ampSystem:
|
|||
* 1j*(1+delta) \
|
||||
/ (1j*(1+delta) + Q*(1-np.power(1+delta,2)*(1+gamma)))
|
||||
|
||||
# Operating Enviornment
|
||||
#####
|
||||
class bufferSystem:
|
||||
"""define global (hardware descriptive) variables for use in our system."""
|
||||
def __init__(self, quiet=False):
|
||||
self.f0 = ampSystem.f0 # design frequency (GHz)
|
||||
self.bw0 = ampSystem.bw0 # assumed extreme tuning range (GHz)
|
||||
self.bw_plt = ampSystem.bw_plt # Plotting range (GHz)
|
||||
|
||||
# Configuration Of Hardware
|
||||
#####
|
||||
self.q2_L = 25
|
||||
self.q2_C = 50
|
||||
self.l2 = 140e-3 # nH
|
||||
self.gm2 = 5e-3 # S
|
||||
|
||||
if not quiet:
|
||||
## Report System Descrption
|
||||
print(' L2 = %.3fpH, C2 = %.3ffF' % (1e3*self.l2, 1e6*self.c2))
|
||||
print(' Rp = %.3f Ohm' % (1/self.g2))
|
||||
print(' Q = %.1f' % (self.Q2))
|
||||
|
||||
@property
|
||||
def w0(self):
|
||||
return self.f0*2*np.pi
|
||||
@property
|
||||
def fbw(self): # fractional bandwidth
|
||||
return self.bw0/self.f0
|
||||
|
||||
# Compute system
|
||||
#####
|
||||
@property
|
||||
def c2(self):
|
||||
return 1/(self.w0*self.w0*self.l2)
|
||||
@property
|
||||
def g2(self):
|
||||
g2_L = 1 / (self.q2_L*self.w0*self.l2)
|
||||
g2_C = self.w0 * self.c2 / self.q2_C
|
||||
return g2_L + g2_C
|
||||
@property
|
||||
def Q2(self):
|
||||
return np.sqrt(self.c2/self.l2)/self.g2
|
||||
|
||||
def compute_ref(self, f_dat):
|
||||
y_tank = self.g2 + f_dat.jw*self.c2 + 1/(f_dat.jw * self.l2)
|
||||
tf = self.__class__.tf_compute(f_dat.delta, self.g2, self.gm2, self.l2, self.c2)
|
||||
return (y_tank, tf)
|
||||
|
||||
@classmethod
|
||||
def tf_compute(cls, delta, gx, gm, l, c):
|
||||
Q = np.sqrt(c/l)/gx
|
||||
return gm / gx \
|
||||
* 1j*(1+delta) \
|
||||
/ (1j*(1+delta) + Q*(1-np.power(1+delta,2)))
|
||||
|
||||
|
|
|
@ -23,7 +23,20 @@ def wrap_rads(angles):
|
|||
return np.mod(angles+np.pi,2*np.pi)-np.pi
|
||||
def atand(x):
|
||||
return 180/np.pi*np.arctan(x)
|
||||
|
||||
|
||||
def setLimitsTicks(ax, data, steps):
|
||||
targs = np.array([1, 2, 4, 5, 10, 20, 30, 50, 60, 100, 250, 1000])
|
||||
lo = np.min(data)
|
||||
hi = np.max(data)
|
||||
rg = hi-lo
|
||||
step_size = rg / steps
|
||||
step_size = np.select(targs >= step_size, targs)
|
||||
lo = np.floor(lo / step_size)*step_size
|
||||
hi = np.ceil(hi / step_size)*step_size
|
||||
marks = np.arange(0,steps+1)*step_size + lo
|
||||
ax.set_ylim((lo,hi))
|
||||
ax.set_yticks(marks)
|
||||
|
||||
def rms_v_bw(err_sig, bandwidth_scale=1):
|
||||
"""compute the rms vs bandwidth assuming a fixed center frequency"""
|
||||
# First compute the error power
|
||||
|
|
183
tankPlot.py
183
tankPlot.py
|
@ -10,9 +10,11 @@ sys.path.append("./pySmithPlot")
|
|||
import smithplot
|
||||
from smithplot import SmithAxes
|
||||
|
||||
plot_list = [4]
|
||||
|
||||
################################################################################
|
||||
# Override the defaults for this script
|
||||
rcParams['figure.figsize'] = [10,7]
|
||||
rcParams['figure.figsize'] = [3.4,2.2]
|
||||
default_window_position=['+20+80', '+120+80']
|
||||
|
||||
################################################################################
|
||||
|
@ -22,29 +24,31 @@ from FreqClass import FreqClass
|
|||
from tankComputers import *
|
||||
|
||||
S=TankGlobals.ampSystem()
|
||||
B=TankGlobals.bufferSystem()
|
||||
f=FreqClass(501, S.f0, S.bw_plt)
|
||||
|
||||
################################################################################
|
||||
# We want a smooth transition out to alpha. So For now assume a squares
|
||||
# weighting out to the maximum alpha at the edges.
|
||||
gain_variation = -8*0 # dB
|
||||
# This gain variation function is the default function baked into the method.
|
||||
gain_variation = 0 # dB
|
||||
S.alpha_min = dB2Vlt(gain_variation)
|
||||
|
||||
# compute correction factor for g1 that will produce common gain at f0
|
||||
# this is defined as the class default
|
||||
g1_swp = S.g1_swp
|
||||
# and compute how much of a negative gm this requres, and it's relative
|
||||
# proportion to the gm of the assumed main amplifier gm.
|
||||
g1_boost = (g1_swp - S.g1)
|
||||
g1_boost = (S.g1_swp - S.g1)
|
||||
g1_ratio = -g1_boost / S.gm1
|
||||
|
||||
print(' Max G1 boost %.2fmS (%.1f%% of gm1)' % \
|
||||
(1e3*np.max(np.abs(g1_boost)), 100*np.max(g1_ratio)))
|
||||
|
||||
################################################################################
|
||||
# Generate a reference implementation
|
||||
# Extract the computed tank conductanec, and the transfer functions.
|
||||
(y_tank, tf) = S.compute_block(f)
|
||||
(_, tf_ref) = S.compute_ref(f)
|
||||
|
||||
# To produce full 360 dgree plots, double the two transfer functions by
|
||||
# considering inversion.
|
||||
# double to describe with perfect inversion stage
|
||||
tf = np.column_stack((tf,-tf))
|
||||
|
||||
|
@ -63,66 +67,123 @@ y_tank = y_tank.T
|
|||
(bw_ang, rms_ang_swp)=rms_v_bw(tf_r_ang-tf_r_ang_ideal, S.bw_plt)
|
||||
(bw_mag, rms_gain_swp)=rms_v_bw(tf_r, S.bw_plt)
|
||||
|
||||
################################################################################
|
||||
(y_buf, tf_buf) = B.compute_ref(f)
|
||||
|
||||
h1 = pp.figure()
|
||||
h2 = pp.figure(figsize=(5,7))
|
||||
h3 = pp.figure(figsize=(5,7))
|
||||
################################################################################
|
||||
################################################################################
|
||||
################################################################################
|
||||
mgr = pp.get_current_fig_manager()
|
||||
################################################################################
|
||||
ax1 = h1.add_subplot(2,2,1, projection='smith')
|
||||
ax2 = h1.add_subplot(2,2,3, projection='polar')
|
||||
ax3 = h1.add_subplot(2,2,2)
|
||||
ax4 = h1.add_subplot(2,2,4)
|
||||
|
||||
ax1.plot(y_tank, datatype=SmithAxes.Y_PARAMETER, marker="None")
|
||||
ax2.plot(np.angle(tf), dB20(tf))
|
||||
ax3.plot(f.hz,dB20(tf))
|
||||
ax4.plot(f.hz,ang_unwrap(tf))
|
||||
|
||||
################################################################################
|
||||
ax6 = h2.add_subplot(2,1,1)
|
||||
ax7 = h2.add_subplot(2,1,2)
|
||||
ax6.plot(f.hz,dB20(tf_r))
|
||||
ax7.plot(f.hz,ang_unwrap(tf_r.T).T)
|
||||
if 6 in plot_list:
|
||||
h6 = pp.figure()
|
||||
mgr = pp.get_current_fig_manager()
|
||||
ax6 = [h6.subplots(1,1)]
|
||||
ax6.append(ax6[0].twinx())
|
||||
|
||||
ax8 = h3.add_subplot(2,1,1)
|
||||
ax9 = h3.add_subplot(2,1,2)
|
||||
ax8.plot(bw_mag,dB20(rms_gain_swp))
|
||||
ax9.plot(bw_ang,rms_ang_swp*180/np.pi)
|
||||
axT=ax6[0]
|
||||
axT.plot(f.hz,dB20(tf_buf))
|
||||
axT.set_ylabel('Gain (dB)')
|
||||
axT.set_title('Buffer Response')
|
||||
setLimitsTicks(axT, dB20(tf_buf), 6)
|
||||
axT=ax6[1]
|
||||
axT.plot(f.hz,ang_unwrap(tf_buf))
|
||||
axT.set_ylabel('Phase (deg)')
|
||||
setLimitsTicks(axT, ang_unwrap(tf_buf), 6)
|
||||
|
||||
ax1.set_title('Tank Impedance')
|
||||
ax2.set_title('Transfer Function')
|
||||
|
||||
ax3.set_title('TF Gain')
|
||||
ax3.set_ylabel('Gain (dB)')
|
||||
ax4.set_title('TF Phase')
|
||||
ax4.set_ylabel('Phase (deg)')
|
||||
ax6.set_title('TF Relative Gain')
|
||||
ax6.set_ylabel('Relative Gain (dB)')
|
||||
ax7.set_title('TF Relative Phase')
|
||||
ax7.set_ylabel('Relative Phase (deg)')
|
||||
for ax_T in [ax3, ax4, ax6, ax7]:
|
||||
ax_T.grid()
|
||||
ax_T.set_xlabel('Freq (GHz)')
|
||||
ax_T.set_xlim(f.hz_range)
|
||||
|
||||
ax8.set_title('RMS Gain Error')
|
||||
ax8.set_ylabel('RMS Gain Error (dB)')
|
||||
ax9.set_title('RMS Phase Error')
|
||||
ax9.set_ylabel('RMS Phase Error (deg)')
|
||||
for ax_T in [ax8, ax9]:
|
||||
ax_T.grid()
|
||||
ax_T.set_xlim((0,S.bw_plt))
|
||||
ax_T.set_xlabel('Bandwidth (GHz)')
|
||||
|
||||
for i,axT in enumerate(ax6):
|
||||
if i==0: axT.grid()
|
||||
axT.set_xlim(f.hz_range)
|
||||
axT.set_xlabel('Frequency (GHz)')
|
||||
c_color = LPRDefaultPlotting.COLOR_CYCLE_LIST[i]
|
||||
axT.lines[0].set_color(c_color)
|
||||
axT.yaxis.label.set_color(c_color)
|
||||
axT.tick_params('y', colors=c_color)
|
||||
h6.tight_layout()
|
||||
mgr.window.geometry(default_window_position[0])
|
||||
h6.show()
|
||||
|
||||
################################################################################
|
||||
h1.tight_layout()
|
||||
h2.tight_layout()
|
||||
h3.tight_layout()
|
||||
mgr.window.geometry(default_window_position[0])
|
||||
h1.show()
|
||||
mgr.window.geometry(default_window_position[1])
|
||||
h2.show()
|
||||
h3.show()
|
||||
if 1 in plot_list:
|
||||
h1 = [pp.figure() for x in range(2)]
|
||||
ax1 = [hT.add_subplot(1,1,1) for hT in h1]
|
||||
ax1[0].plot(f.hz,dB20(tf))
|
||||
ax1[1].plot(f.hz,ang_unwrap(tf))
|
||||
|
||||
ax1[0].set_title('TF Gain')
|
||||
ax1[0].set_ylabel('Gain (dB)')
|
||||
ax1[1].set_title('TF Phase')
|
||||
ax1[1].set_ylabel('Phase (deg)')
|
||||
|
||||
for axT in ax1:
|
||||
axT.grid()
|
||||
axT.set_xlabel('Freq (GHz)')
|
||||
axT.set_xlim(f.hz_range)
|
||||
|
||||
[hT.tight_layout() for hT in h1]
|
||||
mgr.window.geometry(default_window_position[0])
|
||||
[hT.show() for hT in h1]
|
||||
|
||||
if 4 in plot_list:
|
||||
h4 = [pp.figure(figsize=(3.4,3.4)) for x in range(2)]
|
||||
ax4 = []
|
||||
ax4.append(h4[0].add_subplot(1,1,1, projection='smith'))
|
||||
ax4.append(h4[1].add_subplot(1,1,1, projection='polar'))
|
||||
|
||||
ax4[0].plot(y_tank, datatype=SmithAxes.Y_PARAMETER, marker="None")
|
||||
ax4[1].plot(np.angle(tf), dB20(tf))
|
||||
|
||||
ax4[0].set_title('Tank Impedance')
|
||||
ax4[1].set_title('Transfer Function')
|
||||
|
||||
old_pos = ax4[1].title.get_position()
|
||||
ax4[1].title.set_position((old_pos[0], 1.1))
|
||||
h4[1].tight_layout()
|
||||
#[hT.tight_layout() for hT in h4]
|
||||
mgr.window.geometry(default_window_position[0])
|
||||
[hT.show() for hT in h4]
|
||||
|
||||
################################################################################
|
||||
if 2 in plot_list:
|
||||
h2 = [pp.figure() for x in range(2)]
|
||||
|
||||
ax2 = [hT.add_subplot(1,1,1) for hT in h2]
|
||||
ax2[0].plot(f.hz,dB20(tf_r))
|
||||
setLimitsTicks(ax2[0], dB20(tf_r), 6)
|
||||
ax2[1].plot(f.hz,ang_unwrap(tf_r.T).T)
|
||||
setLimitsTicks(ax2[1], ang_unwrap(tf_r.T), 6)
|
||||
|
||||
ax2[0].set_title('Relative Gain')
|
||||
ax2[0].set_ylabel('Gain (dB)')
|
||||
ax2[1].set_title('Relative Phase')
|
||||
ax2[1].set_ylabel('Phase (deg)')
|
||||
|
||||
for axT in ax2:
|
||||
axT.grid()
|
||||
axT.set_xlabel('Freq (GHz)')
|
||||
axT.set_xlim(f.hz_range)
|
||||
[hT.tight_layout() for hT in h2]
|
||||
mgr.window.geometry(default_window_position[1])
|
||||
[hT.show() for hT in h2]
|
||||
|
||||
################################################################################
|
||||
if 3 in plot_list:
|
||||
h3 = [pp.figure() for x in range(2)]
|
||||
|
||||
ax3 = [hT.add_subplot(1,1,1) for hT in h3]
|
||||
ax3[0].plot(bw_mag,dB20(rms_gain_swp))
|
||||
ax3[1].plot(bw_ang,rms_ang_swp*180/np.pi)
|
||||
|
||||
ax3[0].set_title('RMS Gain Error')
|
||||
ax3[0].set_ylabel('RMS Gain Error (dB)')
|
||||
ax3[1].set_title('RMS Phase Error')
|
||||
ax3[1].set_ylabel('RMS Phase Error (deg)')
|
||||
for axT in ax3:
|
||||
axT.grid()
|
||||
axT.set_xlim((0,S.bw_plt))
|
||||
axT.set_xlabel('Bandwidth (GHz)')
|
||||
|
||||
[hT.tight_layout() for hT in h3]
|
||||
[hT.show() for hT in h3]
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue