Refactored to try to split up the defaults from the main code

This is going to get ugly fast if I don't keep on top of it.
This commit is contained in:
Luke 2018-07-18 11:46:46 -07:00
parent 855e35367d
commit fe6d3436e9
4 changed files with 198 additions and 52 deletions

View file

@ -1,60 +1,42 @@
#!/usr/bin/env python3
import numpy as np
from matplotlib import rcParams, pyplot as pp
rcParams['figure.figsize'] = [10,7]
default_window_position='+20+80'
from matplotlib import rcParams, pyplot as pp
import LPRDefaultPlotting
import sys
sys.path.append("./pySmithPlot")
import smithplot
from smithplot import SmithAxes
################################################################################
# Operating Enviornment
#####
f0 = 28
bw0 = 6.5 # assumed tuning range (GHz)
bw_plt = 1 # Plotting range (GHz)
fbw = bw0/f0 # fractional bandwidth
# Define my helper functions.
def dB20(volt_tf):
"""Describe signal gain of a transfer function in dB (i.e. 20log(x))"""
return 20*np.log10(np.abs(volt_tf))
def ang(volt_tf):
"""Describe phase of a transfer function in degrees. Not unwrapped."""
return 180/np.pi*np.angle(volt_tf)
def ang_unwrap(volt_tf):
"""Describe phase of a transfer function in degrees. With unwrapping."""
return 180/np.pi*np.unwrap(np.angle(volt_tf))
def dB10(pwr_tf):
"""Describe power gain of a transfer function in dB (i.e. 10log(x))"""
return 10*np.log10(np.abs(pwr_tf))
frequency_sweep_steps = 101
gamma_sweep_steps = 15
gamma = 1 - np.power(f0 / (f0 + bw0/2),2)
gamma_limit_ratio = 0.99 # how close gamma can get to theoretical extreme
################################################################################
# Override the defaults for this script
rcParams['figure.figsize'] = [10,7]
default_window_position='+20+80'
# Configuration Of Hardware
#####
q1_L = 10
q1_C = 10
l1 = 100e-3 # nH
gm1 = 25e-3 # S
################################################################################
# Operating Enviornment (i.e. circuit parameters)
from TankGlobals import *
# Compute frequency sweep
#####
w0 = f0*2*np.pi
fbw_plt = bw_plt/f0
delta = np.linspace(-fbw_plt/2,fbw_plt/2,frequency_sweep_steps)
w = w0*(1+delta)
f = f0*(1+delta)
jw = 1j*w
##################
# Compute system
#####
c1 = 1/(w0*w0*l1)
g1_L = 1 / (q1_L*w0*l1)
g1_C = w0 * c1 / q1_C
g1 = g1_L + g1_C
# Verify gamma is valid
#####
gamma_max = g1 * np.sqrt(l1/c1)
if gamma > (gamma_limit_ratio * gamma_max):
print("==> WARN: Gamma to large, reset to %.3f (was %.3f) <==" % \
(gamma_max_cap*gamma_max, gamma))
gamma = gamma_max_cap*gamma_max
################################################################################
# Now generate the sweep of resonance tuning (gamma, and capacitance)
gamma_swp = np.linspace(-gamma,gamma,gamma_sweep_steps);
# compute correction factor for g1 that will produce common gain at f0
@ -72,12 +54,6 @@ print(' Rp = %.3f Ohm' % (1/g1))
print(' Max G1 boost %.2fmS (%.1f%% of gm1)' % \
(1e3*np.max(np.abs(g1_boost)), 100*np.max(g1_ratio)))
def db(volt_tf):
return 20*np.log10(np.abs(volt_tf))
def ang(volt_tf):
return 180/np.pi*np.angle(volt_tf)
#y_tank=np.zeros((len(delta),len(gamma_swp)))
h = pp.figure()
mgr = pp.get_current_fig_manager()
ax1 = h.add_subplot(2,2,1, projection='smith')
@ -94,8 +70,8 @@ for itune,gamma_tune in enumerate(gamma_swp):
tf = gm1 / g1_tune * \
1j*(1+delta) / \
( 1j*(1+delta) + K*(1 - (1+gamma_tune)*np.power(1+delta,2)) )
ax2.plot(np.angle(tf), db(tf))
ax3.plot(f,db(tf))
ax2.plot(np.angle(tf), dB20(tf))
ax3.plot(f,dB20(tf))
ax4.plot(f,ang(tf))
################################################################################
@ -105,7 +81,7 @@ ax2.set_title('Transfer Function')
ax3.set_title('TF Gain')
ax3.set_ylabel('Gain (dB)')
ax4.set_title('TF Phase')
ax3.set_ylabel('Phase (deg)')
ax4.set_ylabel('Phase (deg)')
for ax_T in [ax3, ax4]:
ax_T.grid()
ax_T.set_xlabel('Freq (GHz)')