Major refactor to ease duplicate computations and plotting
This commit is contained in:
parent
d6d75b804f
commit
539c2f7481
4 changed files with 326 additions and 120 deletions
62
FreqClass.py
Normal file
62
FreqClass.py
Normal file
|
@ -0,0 +1,62 @@
|
|||
#!/usr/bin/env python3
|
||||
import numpy as np
|
||||
|
||||
class FreqClass:
|
||||
def __init__(self, steps, f0, bw):
|
||||
self.f0 = f0
|
||||
self._bw = bw
|
||||
self._steps = steps;
|
||||
self._update_delta()
|
||||
|
||||
def _update_delta(self):
|
||||
self._delta = self._bw/self.f0*np.linspace(-1/2,1/2,self._steps)
|
||||
|
||||
def __repr__(self):
|
||||
return self.__str__()
|
||||
def __str__(self):
|
||||
return "%gGHz, %gGHz BW sweep [%d points]" % \
|
||||
(self.f0, self._bw, self._steps)
|
||||
|
||||
@property
|
||||
def hz_range(self):
|
||||
return (np.min(self.hz), np.max(self.hz))
|
||||
|
||||
@property
|
||||
def delta(self):
|
||||
return self._delta
|
||||
@property
|
||||
def bw(self):
|
||||
return self._bw
|
||||
@bw.setter
|
||||
def bw(self, bw):
|
||||
self._bw = bw
|
||||
self._update_delta()
|
||||
|
||||
@property
|
||||
def steps(self):
|
||||
return self._steps
|
||||
@steps.setter
|
||||
def steps(self, steps):
|
||||
self._steps = steps
|
||||
self._update_delta()
|
||||
|
||||
@property
|
||||
def hz(self):
|
||||
return self.f0*(1+self._delta)
|
||||
@property
|
||||
def f(self):
|
||||
return self.hz
|
||||
@property
|
||||
def rad(self):
|
||||
return 2*np.pi*self.f0*(1+self._delta)
|
||||
@property
|
||||
def w(self):
|
||||
return self.rad
|
||||
@property
|
||||
def jw(self):
|
||||
return 2j*np.pi*self.f0*(1+self._delta)
|
||||
@property
|
||||
def delta(self):
|
||||
return self._delta
|
||||
|
||||
|
188
TankGlobals.py
188
TankGlobals.py
|
@ -1,50 +1,164 @@
|
|||
#!/usr/bin/env python3
|
||||
import numpy as np
|
||||
import sys
|
||||
|
||||
################################################################################
|
||||
# BEWARE, FOR BEYOND THIS POINT THERE BE DRAGONS! THIS IS ONLY FOR EASE OF
|
||||
# GENERATING ACADEMIC PUBLICATIONS AND FIGURES, NEVER DO THIS SHIT!
|
||||
################################################################################
|
||||
|
||||
def g1_map_default(system):
|
||||
# compute correction factor for g1 that will produce common gain at f0
|
||||
g1_swp = system.g1 * np.sin(np.pi/2-system.phase_swp) / system.alpha_swp
|
||||
return g1_swp
|
||||
|
||||
# Operating Enviornment
|
||||
#####
|
||||
f0 = 28
|
||||
bw0 = 8 # assumed tuning range (GHz)
|
||||
bw_plt = 4 # Plotting range (GHz)
|
||||
fbw = bw0/f0 # fractional bandwidth
|
||||
class ampSystem:
|
||||
"""define global (hardware descriptive) variables for use in our system."""
|
||||
def __init__(self, quiet=False):
|
||||
self.f0 = 28 # design frequency (GHz)
|
||||
self.bw0 = 8 # assumed extreme tuning range (GHz)
|
||||
self.bw_plt = 4 # Plotting range (GHz)
|
||||
|
||||
frequency_sweep_steps = 101
|
||||
gamma_sweep_steps = 8
|
||||
# Configuration Of Hardware
|
||||
#####
|
||||
self.q1_L = 25
|
||||
self.q1_C = 8
|
||||
self.l1 = 140e-3 # nH
|
||||
self.gm1 = 25e-3 # S
|
||||
|
||||
gamma = 1 - np.power(f0 / (f0 + bw0/2),2)
|
||||
gamma_limit_ratio = 0.99 # how close gamma can get to theoretical extreme
|
||||
phase_limit_requested = (1-1/gamma_sweep_steps)*np.pi/2
|
||||
self._gamma_steps=8
|
||||
self._gamma_cap_ratio = 0.997
|
||||
self.alpha_min=1
|
||||
if not quiet:
|
||||
## Report System Descrption
|
||||
print(' L1 = %.3fpH, C1 = %.3ffF' % (1e3*self.l1, 1e6*self.c1))
|
||||
print(' Rp = %.3f Ohm' % (1/self.g1))
|
||||
print(' Q = %.1f' % (self.Q1))
|
||||
self._gamma_warn = False
|
||||
|
||||
self._g1_map_function = g1_map_default
|
||||
|
||||
@property
|
||||
def w0(self):
|
||||
return self.f0*2*np.pi
|
||||
@property
|
||||
def fbw(self): # fractional bandwidth
|
||||
return self.bw0/self.f0
|
||||
@property
|
||||
def phase_max(self):
|
||||
return np.pi/2 * (1 - 1/self.gamma_len)
|
||||
|
||||
# Configuration Of Hardware
|
||||
#####
|
||||
q1_L = 20
|
||||
q1_C = 7
|
||||
l1 = 180e-3 # nH
|
||||
gm1 = 25e-3 # S
|
||||
# Compute system
|
||||
#####
|
||||
@property
|
||||
def c1(self):
|
||||
return 1/(self.w0*self.w0*self.l1)
|
||||
@property
|
||||
def g1(self):
|
||||
g1_L = 1 / (self.q1_L*self.w0*self.l1)
|
||||
g1_C = self.w0 * self.c1 / self.q1_C
|
||||
return g1_L + g1_C
|
||||
@property
|
||||
def Q1(self):
|
||||
return np.sqrt(self.c1/self.l1)/self.g1
|
||||
|
||||
# Compute frequency sweep
|
||||
#####
|
||||
w0 = f0*2*np.pi
|
||||
fbw_plt = bw_plt/f0
|
||||
delta = np.linspace(-fbw_plt/2,fbw_plt/2,frequency_sweep_steps)
|
||||
w = w0*(1+delta)
|
||||
f = f0*(1+delta)
|
||||
jw = 1j*w
|
||||
@property
|
||||
def gamma_len(self):
|
||||
return self._gamma_steps
|
||||
|
||||
@property
|
||||
def gamma(self):
|
||||
gamma = 1 - np.power(self.f0 / (self.f0 + self.bw0/2),2)
|
||||
phase_limit_requested = (1-1/self.gamma_len)*np.pi/2
|
||||
|
||||
# Verify gamma is valid
|
||||
#####
|
||||
gamma_max = 1/(self.alpha_min*self.Q1)
|
||||
if gamma > (self._gamma_cap_ratio * gamma_max):
|
||||
if not self._gamma_warn:
|
||||
self._gamma_warn = True
|
||||
print("==> WARN: Gamma to large, reset to %.1f%% (was %.1f%%) <==" % \
|
||||
(100*self._gamma_cap_ratio * gamma_max, 100*gamma))
|
||||
gamma = self._gamma_cap_ratio * gamma_max
|
||||
return gamma
|
||||
|
||||
@property
|
||||
def alpha_swp(self):
|
||||
range_partial = np.ceil(self.gamma_len/2)
|
||||
lhs = np.linspace(np.sqrt(self.alpha_min),1, range_partial)
|
||||
rhs = np.flip(lhs,0)
|
||||
swp = np.concatenate((lhs,rhs[1:])) if np.mod(self.gamma_len,2) == 1 \
|
||||
else np.concatenate((lhs,rhs))
|
||||
return np.power(swp,2)
|
||||
|
||||
@property
|
||||
def gamma_swp(self):
|
||||
return np.cos(np.pi/2-self.phase_swp) / self.Q1 / self.alpha_swp
|
||||
@property
|
||||
def phase_swp(self):
|
||||
#def phaseSweepGenerate(g1, gamma, c, l, phase_extreme, phase_steps):
|
||||
# Linear PHASE gamma spacing
|
||||
# First compute the most extreme phase given the extreme gamma
|
||||
# if gamma is tuned to the limit, and we want to match the gain performance,
|
||||
# then this is the required tuned g1 value.
|
||||
gamma = self.gamma
|
||||
g1_limit = np.sqrt(np.power(self.g1,2) - np.power(gamma,2)*self.c1/self.l1)
|
||||
# This implies a Q in that particular setting
|
||||
Q_limit = self.Q1*self.g1/g1_limit
|
||||
# given this !, I compute the delta phase at that point.
|
||||
phase_limit = np.pi/2 - np.arctan(1/(Q_limit*gamma))
|
||||
|
||||
phase_swp = np.linspace(-1,1,self.gamma_len) * self.phase_max
|
||||
|
||||
if phase_limit < self.phase_max:
|
||||
print( "==> ERROR: Phase Beyond bounds. Some states will be ignored")
|
||||
print( " %.3f requested\n"
|
||||
" %.3f hardware limit" % \
|
||||
(180/np.pi*self.phase_max, 180/np.pi*abs(phase_limit)))
|
||||
print( " To increase tuning range, gamma must rise or native Q must rise")
|
||||
phase_swp = np.where(phase_swp > phase_limit, phase_swp, np.NaN)
|
||||
|
||||
# This gives us our equal phase spacing points
|
||||
return phase_swp
|
||||
|
||||
@property
|
||||
def c1_swp(self):
|
||||
return self.c1 * (1 + self.gamma_swp)
|
||||
|
||||
def set_g1_swp(self, g1_swp_function):
|
||||
self._g1_map_function = g1_swp_function
|
||||
|
||||
@property
|
||||
def g1_swp(self):
|
||||
return self._g1_map_function(self)
|
||||
|
||||
def compute_block(self, f_dat):
|
||||
g1_swp = self.g1_swp
|
||||
c1_swp = self.c1_swp
|
||||
y_tank = np.zeros((self.gamma_len,f_dat.steps), dtype=complex)
|
||||
tf = np.zeros((self.gamma_len,f_dat.steps), dtype=complex)
|
||||
for itune,gamma_tune in enumerate(self.gamma_swp):
|
||||
c1_tune = c1_swp[itune]
|
||||
g1_tune = g1_swp[itune]
|
||||
y_tank[itune,:] = g1_tune + f_dat.jw*c1_tune + 1/(f_dat.jw * self.l1)
|
||||
tf[itune,:] = self.__class__.tf_compute(f_dat.delta, gamma_tune, g1_tune, self.gm1, self.l1, self.c1)
|
||||
|
||||
tf = tf.T
|
||||
return (y_tank, tf)
|
||||
|
||||
def compute_ref(self, f_dat):
|
||||
y_tank = self.g1 + f_dat.jw*self.c1 + 1/(f_dat.jw * self.l1)
|
||||
tf = self.__class__.tf_compute(f_dat.delta, 0, self.g1, self.gm1, self.l1, self.c1)
|
||||
return (y_tank, tf)
|
||||
|
||||
@classmethod
|
||||
def tf_compute(cls, delta, gamma, gx, gm, l, c):
|
||||
Q = np.sqrt(c/l)/gx
|
||||
return gm / gx \
|
||||
* 1j*(1+delta) \
|
||||
/ (1j*(1+delta) + Q*(1-np.power(1+delta,2)*(1+gamma)))
|
||||
|
||||
##################
|
||||
# Compute system
|
||||
#####
|
||||
c1 = 1/(w0*w0*l1)
|
||||
g1_L = 1 / (q1_L*w0*l1)
|
||||
g1_C = w0 * c1 / q1_C
|
||||
g1 = g1_L + g1_C
|
||||
|
||||
# Verify gamma is valid
|
||||
#####
|
||||
gamma_max = g1 * np.sqrt(l1/c1)
|
||||
if gamma > (gamma_limit_ratio * gamma_max):
|
||||
print("==> WARN: Gamma to large, reset to %.3f (was %.3f) <==" % \
|
||||
(gamma_limit_ratio * gamma_max, gamma))
|
||||
gamma = gamma_limit_ratio * gamma_max
|
||||
|
||||
|
|
52
tankComputers.py
Normal file
52
tankComputers.py
Normal file
|
@ -0,0 +1,52 @@
|
|||
#!/usr/bin/env python3
|
||||
import numpy as np
|
||||
|
||||
################################################################################
|
||||
# Define my helper functions.
|
||||
def dB20(volt_tf):
|
||||
"""Describe signal gain of a transfer function in dB (i.e. 20log(x))"""
|
||||
return 20*np.log10(np.abs(volt_tf))
|
||||
def ang(volt_tf):
|
||||
"""Describe phase of a transfer function in degrees. Not unwrapped."""
|
||||
return 180/np.pi*np.angle(volt_tf)
|
||||
def ang_unwrap(volt_tf):
|
||||
"""Describe phase of a transfer function in degrees. With unwrapping."""
|
||||
return 180/np.pi*np.unwrap(np.angle(volt_tf))
|
||||
def dB10(pwr_tf):
|
||||
"""Describe power gain of a transfer function in dB (i.e. 10log(x))"""
|
||||
return 10*np.log10(np.abs(pwr_tf))
|
||||
|
||||
def dB2Vlt(dB20_value):
|
||||
return np.power(10,dB20_value/20)
|
||||
|
||||
def wrap_rads(angles):
|
||||
return np.mod(angles+np.pi,2*np.pi)-np.pi
|
||||
def atand(x):
|
||||
return 180/np.pi*np.arctan(x)
|
||||
|
||||
def rms_v_bw(err_sig, bandwidth_scale=1):
|
||||
"""compute the rms vs bandwidth assuming a fixed center frequency"""
|
||||
# First compute the error power
|
||||
err_pwr = np.power(np.abs(err_sig),2)
|
||||
steps = len(err_pwr)
|
||||
isodd = True if steps%2 != 0 else False
|
||||
|
||||
# We want to generate the midpoint to the left, and midpoint to the right
|
||||
# as two distinct sets.
|
||||
pt_rhs_start = int(np.floor(steps/2))
|
||||
pt_lhs_stop = int(np.ceil(steps/2))
|
||||
|
||||
folded = err_pwr[pt_rhs_start:] + np.flip(err_pwr[:pt_lhs_stop],0)
|
||||
# Now, we MIGHT have double counted the mid point
|
||||
# if the length is odd, correct for that
|
||||
if isodd: folded[0]*=0.5
|
||||
|
||||
# Now we need an array that describes the number of points used to get here.
|
||||
# this one turns out to be pretty easy.
|
||||
frac_step = np.arange(int(not isodd),steps,2)/(steps-1)
|
||||
ind = 2*np.arange(0,frac_step.shape[0])+1+int(not isodd)
|
||||
|
||||
# Now actually compute the RMS values. First do the running sum
|
||||
rms = np.sqrt(np.cumsum(folded,0) / (ind*np.ones((folded.shape[1],1))).T )
|
||||
return (frac_step*bandwidth_scale, rms)
|
||||
|
144
tankPlot.py
144
tankPlot.py
|
@ -10,25 +10,6 @@ sys.path.append("./pySmithPlot")
|
|||
import smithplot
|
||||
from smithplot import SmithAxes
|
||||
|
||||
################################################################################
|
||||
# Define my helper functions.
|
||||
def dB20(volt_tf):
|
||||
"""Describe signal gain of a transfer function in dB (i.e. 20log(x))"""
|
||||
return 20*np.log10(np.abs(volt_tf))
|
||||
def ang(volt_tf):
|
||||
"""Describe phase of a transfer function in degrees. Not unwrapped."""
|
||||
return 180/np.pi*np.angle(volt_tf)
|
||||
def ang_unwrap(volt_tf):
|
||||
"""Describe phase of a transfer function in degrees. With unwrapping."""
|
||||
return 180/np.pi*np.unwrap(np.angle(volt_tf))
|
||||
def dB10(pwr_tf):
|
||||
"""Describe power gain of a transfer function in dB (i.e. 10log(x))"""
|
||||
return 10*np.log10(np.abs(pwr_tf))
|
||||
|
||||
def atan(x):
|
||||
return 180/np.pi*np.arctan(x)
|
||||
|
||||
|
||||
################################################################################
|
||||
# Override the defaults for this script
|
||||
rcParams['figure.figsize'] = [10,7]
|
||||
|
@ -36,76 +17,57 @@ default_window_position=['+20+80', '+120+80']
|
|||
|
||||
################################################################################
|
||||
# Operating Enviornment (i.e. circuit parameters)
|
||||
from TankGlobals import *
|
||||
import TankGlobals
|
||||
from FreqClass import FreqClass
|
||||
from tankComputers import *
|
||||
|
||||
S=TankGlobals.ampSystem()
|
||||
f=FreqClass(501, S.f0, S.bw_plt)
|
||||
|
||||
################################################################################
|
||||
# Now generate the sweep of resonance tuning (gamma, and capacitance)
|
||||
|
||||
# Linear based gamma spacing
|
||||
#gamma_swp = np.linspace(-gamma,gamma,gamma_sweep_steps)
|
||||
|
||||
# Linear PHASE gamma spacing
|
||||
# First compute the most extreme phase given the extreme gamma
|
||||
g1_limit = np.sqrt( g1*g1 - (gamma*gamma) * c1/l1 )
|
||||
K_limit = np.sqrt(c1/l1)*1/g1_limit
|
||||
phase_limit = np.mod(np.pi/2 - np.arctan( -1/K_limit * 1/gamma ),np.pi) - np.pi
|
||||
|
||||
if abs(phase_limit) < phase_limit_requested:
|
||||
print("==> WARN: Phase Beyond bounds, leaving at limits. <==")
|
||||
print("==> %.3f requested, but hardware limit is %.3f <==" % \
|
||||
(180/np.pi*phase_limit_requested, 180/np.pi*abs(phase_limit)))
|
||||
sys.exit(-1)
|
||||
else:
|
||||
phase_limit = phase_limit_requested
|
||||
|
||||
|
||||
# This gives us our equal phase spacing points
|
||||
phase_swp = np.linspace(-1,1,gamma_sweep_steps) * phase_limit
|
||||
# Then use this to compute the gamma steps to produce arbitrary phase given
|
||||
# our perfect gain constraint.
|
||||
gamma_swp = np.sign(phase_swp)/np.sqrt(np.power(np.tan(np.pi/2 - phase_swp),2)+1) * g1 / np.sqrt(c1/l1)
|
||||
# We want a smooth transition out to alpha. So For now assume a squares
|
||||
# weighting out to the maximum alpha at the edges.
|
||||
gain_variation = -8*0 # dB
|
||||
S.alpha_min = dB2Vlt(gain_variation)
|
||||
|
||||
# compute correction factor for g1 that will produce common gain at f0
|
||||
g1_swp = np.sqrt( g1*g1 - (gamma_swp*gamma_swp) * c1/l1 )
|
||||
# this is defined as the class default
|
||||
g1_swp = S.g1_swp
|
||||
# and compute how much of a negative gm this requres, and it's relative
|
||||
# proportion to the gm of the assumed main amplifier gm.
|
||||
g1_boost = (g1_swp - g1)
|
||||
g1_ratio = -g1_boost / gm1
|
||||
g1_boost = (g1_swp - S.g1)
|
||||
g1_ratio = -g1_boost / S.gm1
|
||||
|
||||
c1_swp = c1 * (1 + gamma_swp)
|
||||
|
||||
## Report System Descrption
|
||||
print(' L1 = %.3fpH, C1 = %.3ffF' % (1e3*l1, 1e6*c1))
|
||||
print(' Rp = %.3f Ohm' % (1/g1))
|
||||
print(' Max G1 boost %.2fmS (%.1f%% of gm1)' % \
|
||||
(1e3*np.max(np.abs(g1_boost)), 100*np.max(g1_ratio)))
|
||||
|
||||
y_tank = np.zeros((len(gamma_swp),len(f)), dtype=complex)
|
||||
tf = np.zeros((len(gamma_swp),len(f)), dtype=complex)
|
||||
for itune,gamma_tune in enumerate(gamma_swp):
|
||||
c1_tune = c1_swp[itune]
|
||||
g1_tune = g1_swp[itune]
|
||||
K = np.sqrt(c1/l1)/g1_tune
|
||||
y_tank_tmp = g1_tune + jw*c1_tune + 1/(jw * l1)
|
||||
y_tank[itune,:] = y_tank_tmp
|
||||
tf_tmp = gm1 / g1_tune * \
|
||||
1j*(1+delta) / \
|
||||
( 1j*(1+delta) + K*(1 - (1+gamma_tune)*np.power(1+delta,2)) )
|
||||
tf[itune,:] = tf_tmp
|
||||
|
||||
tf = tf.T
|
||||
################################################################################
|
||||
# Generate a reference implementation
|
||||
(y_tank, tf) = S.compute_block(f)
|
||||
(_, tf_ref) = S.compute_ref(f)
|
||||
# double to describe with perfect inversion stage
|
||||
tf = np.column_stack((tf,-tf))
|
||||
|
||||
ref_index = int(gamma_swp.shape[0]/2)
|
||||
tf_r = tf / (tf[:,ref_index]*np.ones((tf.shape[1],1))).T
|
||||
y_tank = y_tank.T
|
||||
# compute the relative transfer function thus giving us flat phase, and
|
||||
# flat (ideally) gain response if our system perfectly matches the reference
|
||||
tf_r = tf / (tf_ref*np.ones((tf.shape[1],1))).T
|
||||
|
||||
# We will also do a direct angle comparison
|
||||
tf_r_ang_ideal = wrap_rads(np.concatenate((-S.phase_swp, -np.pi - S.phase_swp)))
|
||||
tf_r_ang = np.angle(tf_r)
|
||||
tf_r_ang_rms = np.sqrt(np.mean(np.power(tf_r_ang-tf_r_ang_ideal,2),0))
|
||||
|
||||
y_tank = y_tank.T
|
||||
################################################################################
|
||||
# Compute RMS phase error relative to ideal reference across plotting bandwidth
|
||||
(bw_ang, rms_ang_swp)=rms_v_bw(tf_r_ang-tf_r_ang_ideal, S.bw_plt)
|
||||
(bw_mag, rms_gain_swp)=rms_v_bw(tf_r, S.bw_plt)
|
||||
|
||||
print(ang(tf[f==28,:]))
|
||||
################################################################################
|
||||
|
||||
h1 = pp.figure()
|
||||
h2 = pp.figure(figsize=(5,7))
|
||||
h3 = pp.figure(figsize=(5,7))
|
||||
mgr = pp.get_current_fig_manager()
|
||||
################################################################################
|
||||
ax1 = h1.add_subplot(2,2,1, projection='smith')
|
||||
|
@ -115,14 +77,19 @@ ax4 = h1.add_subplot(2,2,4)
|
|||
|
||||
ax1.plot(y_tank, datatype=SmithAxes.Y_PARAMETER, marker="None")
|
||||
ax2.plot(np.angle(tf), dB20(tf))
|
||||
ax3.plot(f,dB20(tf))
|
||||
ax4.plot(f,ang_unwrap(tf))
|
||||
ax3.plot(f.hz,dB20(tf))
|
||||
ax4.plot(f.hz,ang_unwrap(tf))
|
||||
|
||||
################################################################################
|
||||
ax8 = h2.add_subplot(2,1,1)
|
||||
ax9 = h2.add_subplot(2,1,2)
|
||||
ax8.plot(f,dB20(tf_r))
|
||||
ax9.plot(f,ang_unwrap(tf_r.T).T)
|
||||
ax6 = h2.add_subplot(2,1,1)
|
||||
ax7 = h2.add_subplot(2,1,2)
|
||||
ax6.plot(f.hz,dB20(tf_r))
|
||||
ax7.plot(f.hz,ang_unwrap(tf_r.T).T)
|
||||
|
||||
ax8 = h3.add_subplot(2,1,1)
|
||||
ax9 = h3.add_subplot(2,1,2)
|
||||
ax8.plot(bw_mag,dB20(rms_gain_swp))
|
||||
ax9.plot(bw_ang,rms_ang_swp*180/np.pi)
|
||||
|
||||
ax1.set_title('Tank Impedance')
|
||||
ax2.set_title('Transfer Function')
|
||||
|
@ -131,20 +98,31 @@ ax3.set_title('TF Gain')
|
|||
ax3.set_ylabel('Gain (dB)')
|
||||
ax4.set_title('TF Phase')
|
||||
ax4.set_ylabel('Phase (deg)')
|
||||
ax8.set_title('TF Relative Gain')
|
||||
ax8.set_ylabel('Relative Gain (dB)')
|
||||
ax9.set_title('TF Relative Phase')
|
||||
ax9.set_ylabel('Relative Phase (deg)')
|
||||
for ax_T in [ax3, ax4, ax8, ax9]:
|
||||
ax6.set_title('TF Relative Gain')
|
||||
ax6.set_ylabel('Relative Gain (dB)')
|
||||
ax7.set_title('TF Relative Phase')
|
||||
ax7.set_ylabel('Relative Phase (deg)')
|
||||
for ax_T in [ax3, ax4, ax6, ax7]:
|
||||
ax_T.grid()
|
||||
ax_T.set_xlabel('Freq (GHz)')
|
||||
ax_T.set_xlim(( np.min(f), np.max(f) ))
|
||||
ax_T.set_xlim(f.hz_range)
|
||||
|
||||
ax8.set_title('RMS Gain Error')
|
||||
ax8.set_ylabel('RMS Gain Error (dB)')
|
||||
ax9.set_title('RMS Phase Error')
|
||||
ax9.set_ylabel('RMS Phase Error (deg)')
|
||||
for ax_T in [ax8, ax9]:
|
||||
ax_T.grid()
|
||||
ax_T.set_xlim((0,S.bw_plt))
|
||||
ax_T.set_xlabel('Bandwidth (GHz)')
|
||||
|
||||
|
||||
################################################################################
|
||||
h1.tight_layout()
|
||||
h2.tight_layout()
|
||||
h3.tight_layout()
|
||||
mgr.window.geometry(default_window_position[0])
|
||||
h1.show()
|
||||
mgr.window.geometry(default_window_position[1])
|
||||
h2.show()
|
||||
h3.show()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue