Updated plotting to provide equal spacing of frequency steps.
This commit is contained in:
		
							parent
							
								
									fe6d3436e9
								
							
						
					
					
						commit
						17d08cfaed
					
				
					 2 changed files with 63 additions and 19 deletions
				
			
		| 
						 | 
				
			
			@ -6,11 +6,11 @@ import numpy as np
 | 
			
		|||
#####
 | 
			
		||||
f0		= 28
 | 
			
		||||
bw0		= 6.5 # assumed tuning range (GHz)
 | 
			
		||||
bw_plt	= 2 # Plotting range (GHz)
 | 
			
		||||
bw_plt	= 3 # Plotting range (GHz)
 | 
			
		||||
fbw		= bw0/f0 # fractional bandwidth
 | 
			
		||||
 | 
			
		||||
frequency_sweep_steps = 101
 | 
			
		||||
gamma_sweep_steps = 15
 | 
			
		||||
gamma_sweep_steps = 16
 | 
			
		||||
 | 
			
		||||
gamma = 1 - np.power(f0 / (f0 + bw0/2),2)
 | 
			
		||||
gamma_limit_ratio = 0.99 # how close gamma can get to theoretical extreme
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										72
									
								
								tankPlot.py
									
										
									
									
									
								
							
							
						
						
									
										72
									
								
								tankPlot.py
									
										
									
									
									
								
							| 
						 | 
				
			
			@ -25,6 +25,9 @@ def dB10(pwr_tf):
 | 
			
		|||
	"""Describe power gain of a transfer function in dB (i.e. 10log(x))"""
 | 
			
		||||
	return 10*np.log10(np.abs(pwr_tf))
 | 
			
		||||
	
 | 
			
		||||
def atan(x):
 | 
			
		||||
	return 180/np.pi*np.arctan(x)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
################################################################################
 | 
			
		||||
# Override the defaults for this script
 | 
			
		||||
| 
						 | 
				
			
			@ -38,7 +41,21 @@ from TankGlobals import *
 | 
			
		|||
################################################################################
 | 
			
		||||
# Now generate the sweep of resonance tuning (gamma, and capacitance)
 | 
			
		||||
 | 
			
		||||
gamma_swp = np.linspace(-gamma,gamma,gamma_sweep_steps);
 | 
			
		||||
# Linear based gamma spacing
 | 
			
		||||
#gamma_swp = np.linspace(-gamma,gamma,gamma_sweep_steps)
 | 
			
		||||
 | 
			
		||||
# Linear PHASE gamma spacing
 | 
			
		||||
# First compute the most extreme phase given the extreme gamma
 | 
			
		||||
g1_limit = np.sqrt( g1*g1 - (gamma*gamma) * c1/l1  )
 | 
			
		||||
K_limit = np.sqrt(c1/l1)*1/g1_limit
 | 
			
		||||
phase_limit = np.mod(np.pi/2 - np.arctan( -1/K_limit * 1/gamma ),np.pi) - np.pi
 | 
			
		||||
 | 
			
		||||
# This gives us our equal phase spacing points
 | 
			
		||||
phase_swp = np.linspace(-1,1,gamma_sweep_steps) * phase_limit
 | 
			
		||||
# Then use this to compute the gamma steps to produce arbitrary phase given
 | 
			
		||||
# our perfect gain constraint.
 | 
			
		||||
gamma_swp = np.sign(phase_swp)/np.sqrt(np.power(np.tan(np.pi/2 - phase_swp),2)+1) * g1 / np.sqrt(c1/l1)
 | 
			
		||||
 | 
			
		||||
# compute correction factor for g1 that will produce common gain at f0
 | 
			
		||||
g1_swp = np.sqrt( g1*g1 - (gamma_swp*gamma_swp) * c1/l1  )
 | 
			
		||||
# and compute how much of a negative gm this requres, and it's relative
 | 
			
		||||
| 
						 | 
				
			
			@ -54,27 +71,45 @@ print('    Rp = %.3f Ohm' % (1/g1))
 | 
			
		|||
print('    Max G1 boost %.2fmS (%.1f%% of gm1)' % \
 | 
			
		||||
	(1e3*np.max(np.abs(g1_boost)), 100*np.max(g1_ratio)))
 | 
			
		||||
 | 
			
		||||
h = pp.figure()
 | 
			
		||||
mgr = pp.get_current_fig_manager()
 | 
			
		||||
ax1 = h.add_subplot(2,2,1, projection='smith')
 | 
			
		||||
ax2 = h.add_subplot(2,2,3, projection='polar')
 | 
			
		||||
ax3 = h.add_subplot(2,2,2)
 | 
			
		||||
ax4 = h.add_subplot(2,2,4)
 | 
			
		||||
y_tank = np.zeros((len(gamma_swp),len(f)), dtype=complex)
 | 
			
		||||
tf = np.zeros((len(gamma_swp),len(f)), dtype=complex)
 | 
			
		||||
for itune,gamma_tune in enumerate(gamma_swp):
 | 
			
		||||
	c1_tune = c1_swp[itune]
 | 
			
		||||
	g1_tune = g1_swp[itune]
 | 
			
		||||
	K = np.sqrt(c1/l1)/g1_tune
 | 
			
		||||
	y_tank = g1_tune + jw*c1_tune + 1/(jw * l1)
 | 
			
		||||
	#print(1/np.mean(np.abs(y_tank)))
 | 
			
		||||
	ax1.plot(y_tank, datatype=SmithAxes.Y_PARAMETER, marker="None")
 | 
			
		||||
	tf = gm1 / g1_tune * \
 | 
			
		||||
	y_tank_tmp = g1_tune + jw*c1_tune + 1/(jw * l1)
 | 
			
		||||
	y_tank[itune,:] = y_tank_tmp
 | 
			
		||||
	tf_tmp = gm1 / g1_tune * \
 | 
			
		||||
		1j*(1+delta) / \
 | 
			
		||||
		( 1j*(1+delta) + K*(1 - (1+gamma_tune)*np.power(1+delta,2)) )
 | 
			
		||||
	tf[itune,:] = tf_tmp
 | 
			
		||||
 | 
			
		||||
tf = tf.T
 | 
			
		||||
tf_d = tf[:,1:]-tf[:,:-1]
 | 
			
		||||
tf_r = tf / (tf[:,int(tf.shape[1]/2)]*np.ones((tf.shape[1],1))).T
 | 
			
		||||
y_tank = y_tank.T
 | 
			
		||||
################################################################################
 | 
			
		||||
 | 
			
		||||
h1 = pp.figure()
 | 
			
		||||
h2 = pp.figure(figsize=(5,7))
 | 
			
		||||
mgr = pp.get_current_fig_manager()
 | 
			
		||||
################################################################################
 | 
			
		||||
ax1 = h1.add_subplot(2,2,1, projection='smith')
 | 
			
		||||
ax2 = h1.add_subplot(2,2,3, projection='polar')
 | 
			
		||||
ax3 = h1.add_subplot(2,2,2)
 | 
			
		||||
ax4 = h1.add_subplot(2,2,4)
 | 
			
		||||
 | 
			
		||||
ax1.plot(y_tank, datatype=SmithAxes.Y_PARAMETER, marker="None")
 | 
			
		||||
ax2.plot(np.angle(tf), dB20(tf))
 | 
			
		||||
ax3.plot(f,dB20(tf))
 | 
			
		||||
ax4.plot(f,ang(tf))
 | 
			
		||||
 | 
			
		||||
################################################################################
 | 
			
		||||
ax8 = h2.add_subplot(2,1,1)
 | 
			
		||||
ax9 = h2.add_subplot(2,1,2)
 | 
			
		||||
ax8.plot(f,dB20(tf_r))
 | 
			
		||||
ax9.plot(f,ang_unwrap(tf_r.T).T)
 | 
			
		||||
 | 
			
		||||
ax1.set_title('Tank Impedance')
 | 
			
		||||
ax2.set_title('Transfer Function')
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -82,11 +117,20 @@ ax3.set_title('TF Gain')
 | 
			
		|||
ax3.set_ylabel('Gain (dB)')
 | 
			
		||||
ax4.set_title('TF Phase')
 | 
			
		||||
ax4.set_ylabel('Phase (deg)')
 | 
			
		||||
for ax_T in [ax3, ax4]:
 | 
			
		||||
ax8.set_title('TF Relative Gain')
 | 
			
		||||
ax8.set_ylabel('Relative Gain (dB)')
 | 
			
		||||
ax9.set_title('TF Relative Phase')
 | 
			
		||||
ax9.set_ylabel('Relative Phase (deg)')
 | 
			
		||||
for ax_T in [ax3, ax4, ax8, ax9]:
 | 
			
		||||
	ax_T.grid()
 | 
			
		||||
	ax_T.set_xlabel('Freq (GHz)')
 | 
			
		||||
	ax_T.set_xlim(( np.min(f), np.max(f) ))
 | 
			
		||||
 | 
			
		||||
h.tight_layout()
 | 
			
		||||
 | 
			
		||||
################################################################################
 | 
			
		||||
h1.tight_layout()
 | 
			
		||||
h2.tight_layout()
 | 
			
		||||
mgr.window.geometry(default_window_position)
 | 
			
		||||
h.show()
 | 
			
		||||
h1.show()
 | 
			
		||||
mgr.window.geometry(default_window_position)
 | 
			
		||||
h2.show()
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue