Updated plotting to provide equal spacing of frequency steps.
This commit is contained in:
		
							parent
							
								
									fe6d3436e9
								
							
						
					
					
						commit
						17d08cfaed
					
				
					 2 changed files with 63 additions and 19 deletions
				
			
		| 
						 | 
					@ -6,11 +6,11 @@ import numpy as np
 | 
				
			||||||
#####
 | 
					#####
 | 
				
			||||||
f0		= 28
 | 
					f0		= 28
 | 
				
			||||||
bw0		= 6.5 # assumed tuning range (GHz)
 | 
					bw0		= 6.5 # assumed tuning range (GHz)
 | 
				
			||||||
bw_plt	= 2 # Plotting range (GHz)
 | 
					bw_plt	= 3 # Plotting range (GHz)
 | 
				
			||||||
fbw		= bw0/f0 # fractional bandwidth
 | 
					fbw		= bw0/f0 # fractional bandwidth
 | 
				
			||||||
 | 
					
 | 
				
			||||||
frequency_sweep_steps = 101
 | 
					frequency_sweep_steps = 101
 | 
				
			||||||
gamma_sweep_steps = 15
 | 
					gamma_sweep_steps = 16
 | 
				
			||||||
 | 
					
 | 
				
			||||||
gamma = 1 - np.power(f0 / (f0 + bw0/2),2)
 | 
					gamma = 1 - np.power(f0 / (f0 + bw0/2),2)
 | 
				
			||||||
gamma_limit_ratio = 0.99 # how close gamma can get to theoretical extreme
 | 
					gamma_limit_ratio = 0.99 # how close gamma can get to theoretical extreme
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										78
									
								
								tankPlot.py
									
										
									
									
									
								
							
							
						
						
									
										78
									
								
								tankPlot.py
									
										
									
									
									
								
							| 
						 | 
					@ -24,6 +24,9 @@ def ang_unwrap(volt_tf):
 | 
				
			||||||
def dB10(pwr_tf):
 | 
					def dB10(pwr_tf):
 | 
				
			||||||
	"""Describe power gain of a transfer function in dB (i.e. 10log(x))"""
 | 
						"""Describe power gain of a transfer function in dB (i.e. 10log(x))"""
 | 
				
			||||||
	return 10*np.log10(np.abs(pwr_tf))
 | 
						return 10*np.log10(np.abs(pwr_tf))
 | 
				
			||||||
 | 
						
 | 
				
			||||||
 | 
					def atan(x):
 | 
				
			||||||
 | 
						return 180/np.pi*np.arctan(x)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
################################################################################
 | 
					################################################################################
 | 
				
			||||||
| 
						 | 
					@ -38,7 +41,21 @@ from TankGlobals import *
 | 
				
			||||||
################################################################################
 | 
					################################################################################
 | 
				
			||||||
# Now generate the sweep of resonance tuning (gamma, and capacitance)
 | 
					# Now generate the sweep of resonance tuning (gamma, and capacitance)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
gamma_swp = np.linspace(-gamma,gamma,gamma_sweep_steps);
 | 
					# Linear based gamma spacing
 | 
				
			||||||
 | 
					#gamma_swp = np.linspace(-gamma,gamma,gamma_sweep_steps)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Linear PHASE gamma spacing
 | 
				
			||||||
 | 
					# First compute the most extreme phase given the extreme gamma
 | 
				
			||||||
 | 
					g1_limit = np.sqrt( g1*g1 - (gamma*gamma) * c1/l1  )
 | 
				
			||||||
 | 
					K_limit = np.sqrt(c1/l1)*1/g1_limit
 | 
				
			||||||
 | 
					phase_limit = np.mod(np.pi/2 - np.arctan( -1/K_limit * 1/gamma ),np.pi) - np.pi
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# This gives us our equal phase spacing points
 | 
				
			||||||
 | 
					phase_swp = np.linspace(-1,1,gamma_sweep_steps) * phase_limit
 | 
				
			||||||
 | 
					# Then use this to compute the gamma steps to produce arbitrary phase given
 | 
				
			||||||
 | 
					# our perfect gain constraint.
 | 
				
			||||||
 | 
					gamma_swp = np.sign(phase_swp)/np.sqrt(np.power(np.tan(np.pi/2 - phase_swp),2)+1) * g1 / np.sqrt(c1/l1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# compute correction factor for g1 that will produce common gain at f0
 | 
					# compute correction factor for g1 that will produce common gain at f0
 | 
				
			||||||
g1_swp = np.sqrt( g1*g1 - (gamma_swp*gamma_swp) * c1/l1  )
 | 
					g1_swp = np.sqrt( g1*g1 - (gamma_swp*gamma_swp) * c1/l1  )
 | 
				
			||||||
# and compute how much of a negative gm this requres, and it's relative
 | 
					# and compute how much of a negative gm this requres, and it's relative
 | 
				
			||||||
| 
						 | 
					@ -54,27 +71,45 @@ print('    Rp = %.3f Ohm' % (1/g1))
 | 
				
			||||||
print('    Max G1 boost %.2fmS (%.1f%% of gm1)' % \
 | 
					print('    Max G1 boost %.2fmS (%.1f%% of gm1)' % \
 | 
				
			||||||
	(1e3*np.max(np.abs(g1_boost)), 100*np.max(g1_ratio)))
 | 
						(1e3*np.max(np.abs(g1_boost)), 100*np.max(g1_ratio)))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
h = pp.figure()
 | 
					y_tank = np.zeros((len(gamma_swp),len(f)), dtype=complex)
 | 
				
			||||||
mgr = pp.get_current_fig_manager()
 | 
					tf = np.zeros((len(gamma_swp),len(f)), dtype=complex)
 | 
				
			||||||
ax1 = h.add_subplot(2,2,1, projection='smith')
 | 
					 | 
				
			||||||
ax2 = h.add_subplot(2,2,3, projection='polar')
 | 
					 | 
				
			||||||
ax3 = h.add_subplot(2,2,2)
 | 
					 | 
				
			||||||
ax4 = h.add_subplot(2,2,4)
 | 
					 | 
				
			||||||
for itune,gamma_tune in enumerate(gamma_swp):
 | 
					for itune,gamma_tune in enumerate(gamma_swp):
 | 
				
			||||||
	c1_tune = c1_swp[itune]
 | 
						c1_tune = c1_swp[itune]
 | 
				
			||||||
	g1_tune = g1_swp[itune]
 | 
						g1_tune = g1_swp[itune]
 | 
				
			||||||
	K = np.sqrt(c1/l1)/g1_tune
 | 
						K = np.sqrt(c1/l1)/g1_tune
 | 
				
			||||||
	y_tank = g1_tune + jw*c1_tune + 1/(jw * l1)
 | 
						y_tank_tmp = g1_tune + jw*c1_tune + 1/(jw * l1)
 | 
				
			||||||
	#print(1/np.mean(np.abs(y_tank)))
 | 
						y_tank[itune,:] = y_tank_tmp
 | 
				
			||||||
	ax1.plot(y_tank, datatype=SmithAxes.Y_PARAMETER, marker="None")
 | 
						tf_tmp = gm1 / g1_tune * \
 | 
				
			||||||
	tf = gm1 / g1_tune * \
 | 
					 | 
				
			||||||
		1j*(1+delta) / \
 | 
							1j*(1+delta) / \
 | 
				
			||||||
		( 1j*(1+delta) + K*(1 - (1+gamma_tune)*np.power(1+delta,2)) )
 | 
							( 1j*(1+delta) + K*(1 - (1+gamma_tune)*np.power(1+delta,2)) )
 | 
				
			||||||
	ax2.plot(np.angle(tf), dB20(tf))
 | 
						tf[itune,:] = tf_tmp
 | 
				
			||||||
	ax3.plot(f,dB20(tf))
 | 
					
 | 
				
			||||||
	ax4.plot(f,ang(tf))
 | 
					tf = tf.T
 | 
				
			||||||
 | 
					tf_d = tf[:,1:]-tf[:,:-1]
 | 
				
			||||||
 | 
					tf_r = tf / (tf[:,int(tf.shape[1]/2)]*np.ones((tf.shape[1],1))).T
 | 
				
			||||||
 | 
					y_tank = y_tank.T
 | 
				
			||||||
 | 
					################################################################################
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					h1 = pp.figure()
 | 
				
			||||||
 | 
					h2 = pp.figure(figsize=(5,7))
 | 
				
			||||||
 | 
					mgr = pp.get_current_fig_manager()
 | 
				
			||||||
 | 
					################################################################################
 | 
				
			||||||
 | 
					ax1 = h1.add_subplot(2,2,1, projection='smith')
 | 
				
			||||||
 | 
					ax2 = h1.add_subplot(2,2,3, projection='polar')
 | 
				
			||||||
 | 
					ax3 = h1.add_subplot(2,2,2)
 | 
				
			||||||
 | 
					ax4 = h1.add_subplot(2,2,4)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					ax1.plot(y_tank, datatype=SmithAxes.Y_PARAMETER, marker="None")
 | 
				
			||||||
 | 
					ax2.plot(np.angle(tf), dB20(tf))
 | 
				
			||||||
 | 
					ax3.plot(f,dB20(tf))
 | 
				
			||||||
 | 
					ax4.plot(f,ang(tf))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
################################################################################
 | 
					################################################################################
 | 
				
			||||||
 | 
					ax8 = h2.add_subplot(2,1,1)
 | 
				
			||||||
 | 
					ax9 = h2.add_subplot(2,1,2)
 | 
				
			||||||
 | 
					ax8.plot(f,dB20(tf_r))
 | 
				
			||||||
 | 
					ax9.plot(f,ang_unwrap(tf_r.T).T)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
ax1.set_title('Tank Impedance')
 | 
					ax1.set_title('Tank Impedance')
 | 
				
			||||||
ax2.set_title('Transfer Function')
 | 
					ax2.set_title('Transfer Function')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -82,11 +117,20 @@ ax3.set_title('TF Gain')
 | 
				
			||||||
ax3.set_ylabel('Gain (dB)')
 | 
					ax3.set_ylabel('Gain (dB)')
 | 
				
			||||||
ax4.set_title('TF Phase')
 | 
					ax4.set_title('TF Phase')
 | 
				
			||||||
ax4.set_ylabel('Phase (deg)')
 | 
					ax4.set_ylabel('Phase (deg)')
 | 
				
			||||||
for ax_T in [ax3, ax4]:
 | 
					ax8.set_title('TF Relative Gain')
 | 
				
			||||||
 | 
					ax8.set_ylabel('Relative Gain (dB)')
 | 
				
			||||||
 | 
					ax9.set_title('TF Relative Phase')
 | 
				
			||||||
 | 
					ax9.set_ylabel('Relative Phase (deg)')
 | 
				
			||||||
 | 
					for ax_T in [ax3, ax4, ax8, ax9]:
 | 
				
			||||||
	ax_T.grid()
 | 
						ax_T.grid()
 | 
				
			||||||
	ax_T.set_xlabel('Freq (GHz)')
 | 
						ax_T.set_xlabel('Freq (GHz)')
 | 
				
			||||||
	ax_T.set_xlim(( np.min(f), np.max(f) ))
 | 
						ax_T.set_xlim(( np.min(f), np.max(f) ))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
h.tight_layout()
 | 
					
 | 
				
			||||||
 | 
					################################################################################
 | 
				
			||||||
 | 
					h1.tight_layout()
 | 
				
			||||||
 | 
					h2.tight_layout()
 | 
				
			||||||
mgr.window.geometry(default_window_position)
 | 
					mgr.window.geometry(default_window_position)
 | 
				
			||||||
h.show()
 | 
					h1.show()
 | 
				
			||||||
 | 
					mgr.window.geometry(default_window_position)
 | 
				
			||||||
 | 
					h2.show()
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue