Updated plotting to provide equal spacing of frequency steps.
This commit is contained in:
parent
fe6d3436e9
commit
17d08cfaed
2 changed files with 63 additions and 19 deletions
78
tankPlot.py
78
tankPlot.py
|
@ -24,6 +24,9 @@ def ang_unwrap(volt_tf):
|
|||
def dB10(pwr_tf):
|
||||
"""Describe power gain of a transfer function in dB (i.e. 10log(x))"""
|
||||
return 10*np.log10(np.abs(pwr_tf))
|
||||
|
||||
def atan(x):
|
||||
return 180/np.pi*np.arctan(x)
|
||||
|
||||
|
||||
################################################################################
|
||||
|
@ -38,7 +41,21 @@ from TankGlobals import *
|
|||
################################################################################
|
||||
# Now generate the sweep of resonance tuning (gamma, and capacitance)
|
||||
|
||||
gamma_swp = np.linspace(-gamma,gamma,gamma_sweep_steps);
|
||||
# Linear based gamma spacing
|
||||
#gamma_swp = np.linspace(-gamma,gamma,gamma_sweep_steps)
|
||||
|
||||
# Linear PHASE gamma spacing
|
||||
# First compute the most extreme phase given the extreme gamma
|
||||
g1_limit = np.sqrt( g1*g1 - (gamma*gamma) * c1/l1 )
|
||||
K_limit = np.sqrt(c1/l1)*1/g1_limit
|
||||
phase_limit = np.mod(np.pi/2 - np.arctan( -1/K_limit * 1/gamma ),np.pi) - np.pi
|
||||
|
||||
# This gives us our equal phase spacing points
|
||||
phase_swp = np.linspace(-1,1,gamma_sweep_steps) * phase_limit
|
||||
# Then use this to compute the gamma steps to produce arbitrary phase given
|
||||
# our perfect gain constraint.
|
||||
gamma_swp = np.sign(phase_swp)/np.sqrt(np.power(np.tan(np.pi/2 - phase_swp),2)+1) * g1 / np.sqrt(c1/l1)
|
||||
|
||||
# compute correction factor for g1 that will produce common gain at f0
|
||||
g1_swp = np.sqrt( g1*g1 - (gamma_swp*gamma_swp) * c1/l1 )
|
||||
# and compute how much of a negative gm this requres, and it's relative
|
||||
|
@ -54,27 +71,45 @@ print(' Rp = %.3f Ohm' % (1/g1))
|
|||
print(' Max G1 boost %.2fmS (%.1f%% of gm1)' % \
|
||||
(1e3*np.max(np.abs(g1_boost)), 100*np.max(g1_ratio)))
|
||||
|
||||
h = pp.figure()
|
||||
mgr = pp.get_current_fig_manager()
|
||||
ax1 = h.add_subplot(2,2,1, projection='smith')
|
||||
ax2 = h.add_subplot(2,2,3, projection='polar')
|
||||
ax3 = h.add_subplot(2,2,2)
|
||||
ax4 = h.add_subplot(2,2,4)
|
||||
y_tank = np.zeros((len(gamma_swp),len(f)), dtype=complex)
|
||||
tf = np.zeros((len(gamma_swp),len(f)), dtype=complex)
|
||||
for itune,gamma_tune in enumerate(gamma_swp):
|
||||
c1_tune = c1_swp[itune]
|
||||
g1_tune = g1_swp[itune]
|
||||
K = np.sqrt(c1/l1)/g1_tune
|
||||
y_tank = g1_tune + jw*c1_tune + 1/(jw * l1)
|
||||
#print(1/np.mean(np.abs(y_tank)))
|
||||
ax1.plot(y_tank, datatype=SmithAxes.Y_PARAMETER, marker="None")
|
||||
tf = gm1 / g1_tune * \
|
||||
y_tank_tmp = g1_tune + jw*c1_tune + 1/(jw * l1)
|
||||
y_tank[itune,:] = y_tank_tmp
|
||||
tf_tmp = gm1 / g1_tune * \
|
||||
1j*(1+delta) / \
|
||||
( 1j*(1+delta) + K*(1 - (1+gamma_tune)*np.power(1+delta,2)) )
|
||||
ax2.plot(np.angle(tf), dB20(tf))
|
||||
ax3.plot(f,dB20(tf))
|
||||
ax4.plot(f,ang(tf))
|
||||
tf[itune,:] = tf_tmp
|
||||
|
||||
tf = tf.T
|
||||
tf_d = tf[:,1:]-tf[:,:-1]
|
||||
tf_r = tf / (tf[:,int(tf.shape[1]/2)]*np.ones((tf.shape[1],1))).T
|
||||
y_tank = y_tank.T
|
||||
################################################################################
|
||||
|
||||
h1 = pp.figure()
|
||||
h2 = pp.figure(figsize=(5,7))
|
||||
mgr = pp.get_current_fig_manager()
|
||||
################################################################################
|
||||
ax1 = h1.add_subplot(2,2,1, projection='smith')
|
||||
ax2 = h1.add_subplot(2,2,3, projection='polar')
|
||||
ax3 = h1.add_subplot(2,2,2)
|
||||
ax4 = h1.add_subplot(2,2,4)
|
||||
|
||||
ax1.plot(y_tank, datatype=SmithAxes.Y_PARAMETER, marker="None")
|
||||
ax2.plot(np.angle(tf), dB20(tf))
|
||||
ax3.plot(f,dB20(tf))
|
||||
ax4.plot(f,ang(tf))
|
||||
|
||||
################################################################################
|
||||
ax8 = h2.add_subplot(2,1,1)
|
||||
ax9 = h2.add_subplot(2,1,2)
|
||||
ax8.plot(f,dB20(tf_r))
|
||||
ax9.plot(f,ang_unwrap(tf_r.T).T)
|
||||
|
||||
ax1.set_title('Tank Impedance')
|
||||
ax2.set_title('Transfer Function')
|
||||
|
||||
|
@ -82,11 +117,20 @@ ax3.set_title('TF Gain')
|
|||
ax3.set_ylabel('Gain (dB)')
|
||||
ax4.set_title('TF Phase')
|
||||
ax4.set_ylabel('Phase (deg)')
|
||||
for ax_T in [ax3, ax4]:
|
||||
ax8.set_title('TF Relative Gain')
|
||||
ax8.set_ylabel('Relative Gain (dB)')
|
||||
ax9.set_title('TF Relative Phase')
|
||||
ax9.set_ylabel('Relative Phase (deg)')
|
||||
for ax_T in [ax3, ax4, ax8, ax9]:
|
||||
ax_T.grid()
|
||||
ax_T.set_xlabel('Freq (GHz)')
|
||||
ax_T.set_xlim(( np.min(f), np.max(f) ))
|
||||
|
||||
h.tight_layout()
|
||||
|
||||
################################################################################
|
||||
h1.tight_layout()
|
||||
h2.tight_layout()
|
||||
mgr.window.geometry(default_window_position)
|
||||
h.show()
|
||||
h1.show()
|
||||
mgr.window.geometry(default_window_position)
|
||||
h2.show()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue