ps_plotter/TankGlobals.py

235 lines
6.9 KiB
Python

#!/usr/bin/env python3
import numpy as np
import sys
################################################################################
# BEWARE, FOR BEYOND THIS POINT THERE BE DRAGONS! THIS IS ONLY FOR EASE OF
# GENERATING ACADEMIC PUBLICATIONS AND FIGURES, NEVER DO THIS SHIT!
################################################################################
def g1_map_default(system):
# compute correction factor for g1 that will produce common gain at f0
g1_swp = system.g1 * np.sin(np.pi/2-system.phase_swp) / system.alpha_swp
return g1_swp
def g1_map_flat(system):
return system.g1*np.ones(system.phase_swp.shape)
def gamma_map_default(system):
return np.cos(np.pi/2-system.phase_swp) / system.Q1 / system.alpha_swp
def gamma_map_flat(system):
return np.tan(np.pi/2-system.phase_swp) / system.Q1 / system.alpha_swp
# Operating Enviornment
#####
class ampSystem:
f0 = 28
bw0 = 8
bw_plt = 3
"""define global (hardware descriptive) variables for use in our system."""
def __init__(self, quiet=False):
self.f0 = self.__class__.f0 # design frequency (GHz)
self.bw0 = self.__class__.bw0 # assumed extreme tuning range (GHz)
self.bw_plt = self.__class__.bw_plt # Plotting range (GHz)
# Configuration Of Hardware
#####
self.q1_L = 25
self.q1_C = 8
self.l1 = 140e-3 # nH
self.gm1 = 25e-3 # S
self._gamma_steps=8
self._gamma_cap_ratio = 0.997
self.alpha_min=1
if not quiet:
## Report System Descrption
print(' L1 = %.3fpH, C1 = %.3ffF' % (1e3*self.l1, 1e6*self.c1))
print(' Rp = %.3f Ohm' % (1/self.g1))
print(' Q = %.1f' % (self.Q1))
self._gamma_warn = False
self._g1_map_function = g1_map_default
self._gamma_map_function = gamma_map_default
@property
def w0(self):
return self.f0*2*np.pi
@property
def fbw(self): # fractional bandwidth
return self.bw0/self.f0
# Compute system
#####
@property
def c1(self):
return 1/(self.w0*self.w0*self.l1)
@property
def g1(self):
g1_L = 1 / (self.q1_L*self.w0*self.l1)
g1_C = self.w0 * self.c1 / self.q1_C
return g1_L + g1_C
@property
def Q1(self):
return np.sqrt(self.c1/self.l1)/self.g1
@property
def phase_max(self):
return np.pi/2 * (1 - 1/self.gamma_len)
@property
def gamma_len(self):
return self._gamma_steps
@property
def gamma(self):
gamma = 1 - np.power(self.f0 / (self.f0 + self.bw0/2),2)
phase_limit_requested = (1-1/self.gamma_len)*np.pi/2
# Verify gamma is valid
#####
gamma_max = 1/(np.min((1, self.alpha_min))*self.Q1)
if gamma > (self._gamma_cap_ratio * gamma_max):
if not self._gamma_warn:
self._gamma_warn = True
print("==> WARN: Gamma to large, reset to %.1f%% (was %.1f%%) <==" % \
(100*self._gamma_cap_ratio * gamma_max, 100*gamma))
gamma = self._gamma_cap_ratio * gamma_max
return gamma
@property
def alpha_swp(self):
range_partial = np.ceil(self.gamma_len/2)
rhs = np.power(np.linspace(0,1,range_partial),2)*(self.alpha_min-1)+1
lhs = np.flip(rhs,0)
#lhs = np.linspace(np.sqrt(self.alpha_min),1, range_partial)
#rhs = np.flip(lhs,0)
swp = np.concatenate((lhs,rhs[1:])) if np.mod(self.gamma_len,2) == 1 \
else np.concatenate((lhs,rhs))
#return np.power(swp,2)
return swp
def set_gamma_swp(self, gamma_swp_function):
self._gamma_map_function = gamma_swp_function
@property
def gamma_swp(self):
return self._gamma_map_function(self)
@property
def phase_swp(self):
#def phaseSweepGenerate(g1, gamma, c, l, phase_extreme, phase_steps):
# Linear PHASE gamma spacing
# First compute the most extreme phase given the extreme gamma
# if gamma is tuned to the limit, and we want to match the gain performance,
# then this is the required tuned g1 value.
gamma = self.gamma
g1_limit = np.sqrt(np.power(self.g1,2) - np.power(gamma,2)*self.c1/self.l1)
# This implies a Q in that particular setting
Q_limit = self.Q1*self.g1/g1_limit
# given this !, I compute the delta phase at that point.
phase_limit = np.pi/2 - np.arctan(1/(Q_limit*gamma))
phase_swp = np.linspace(-1,1,self.gamma_len) * self.phase_max
if phase_limit < self.phase_max:
print( "==> ERROR: Phase Beyond bounds. Some states will be ignored")
print( " %.3f requested\n"
" %.3f hardware limit" % \
(180/np.pi*self.phase_max, 180/np.pi*abs(phase_limit)))
print( " To increase tuning range, gamma must rise or native Q must rise")
phase_swp = np.where(phase_swp > phase_limit, phase_swp, np.NaN)
# This gives us our equal phase spacing points
return phase_swp
@property
def c1_swp(self):
return self.c1 * (1 + self.gamma_swp)
def set_g1_swp(self, g1_swp_function):
self._g1_map_function = g1_swp_function
@property
def g1_swp(self):
return self._g1_map_function(self)
def compute_block(self, f_dat):
g1_swp = self.g1_swp
c1_swp = self.c1_swp
y_tank = np.zeros((self.gamma_len,f_dat.steps), dtype=complex)
tf = np.zeros((self.gamma_len,f_dat.steps), dtype=complex)
for itune,gamma_tune in enumerate(self.gamma_swp):
c1_tune = c1_swp[itune]
g1_tune = g1_swp[itune]
y_tank[itune,:] = g1_tune + f_dat.jw*c1_tune + 1/(f_dat.jw * self.l1)
tf[itune,:] = self.__class__.tf_compute(f_dat.delta, gamma_tune, g1_tune, self.gm1, self.l1, self.c1)
tf = tf.T
return (y_tank, tf)
def compute_ref(self, f_dat):
y_tank = self.g1 + f_dat.jw*self.c1 + 1/(f_dat.jw * self.l1)
tf = self.__class__.tf_compute(f_dat.delta, 0, self.g1, self.gm1, self.l1, self.c1)
return (y_tank, tf)
@classmethod
def tf_compute(cls, delta, gamma, gx, gm, l, c):
Q = np.sqrt(c/l)/gx
return gm / gx \
* 1j*(1+delta) \
/ (1j*(1+delta) + Q*(1-np.power(1+delta,2)*(1+gamma)))
# Operating Enviornment
#####
class bufferSystem:
"""define global (hardware descriptive) variables for use in our system."""
def __init__(self, quiet=False):
self.f0 = ampSystem.f0 # design frequency (GHz)
self.bw0 = ampSystem.bw0 # assumed extreme tuning range (GHz)
self.bw_plt = ampSystem.bw_plt # Plotting range (GHz)
# Configuration Of Hardware
#####
self.q2_L = 25
self.q2_C = 50
self.l2 = 140e-3 # nH
self.gm2 = 5e-3 # S
if not quiet:
## Report System Descrption
print(' L2 = %.3fpH, C2 = %.3ffF' % (1e3*self.l2, 1e6*self.c2))
print(' Rp = %.3f Ohm' % (1/self.g2))
print(' Q = %.1f' % (self.Q2))
@property
def w0(self):
return self.f0*2*np.pi
@property
def fbw(self): # fractional bandwidth
return self.bw0/self.f0
# Compute system
#####
@property
def c2(self):
return 1/(self.w0*self.w0*self.l2)
@property
def g2(self):
g2_L = 1 / (self.q2_L*self.w0*self.l2)
g2_C = self.w0 * self.c2 / self.q2_C
return g2_L + g2_C
@property
def Q2(self):
return np.sqrt(self.c2/self.l2)/self.g2
def compute_ref(self, f_dat):
y_tank = self.g2 + f_dat.jw*self.c2 + 1/(f_dat.jw * self.l2)
tf = self.__class__.tf_compute(f_dat.delta, self.g2, self.gm2, self.l2, self.c2)
return (y_tank, tf)
@classmethod
def tf_compute(cls, delta, gx, gm, l, c):
Q = np.sqrt(c/l)/gx
return gm / gx \
* 1j*(1+delta) \
/ (1j*(1+delta) + Q*(1-np.power(1+delta,2)))