ps_plotter/parsePy.py

434 lines
15 KiB
Python
Executable file

#!/usr/bin/env python3
import os
import argparse
import numpy as np
import matplotlib
################################################################################
args_parser = argparse.ArgumentParser()
args_parser.add_argument('--save','-s', action='store_true',
help='save to files')
args_parser.add_argument('--raster','-r', action='store_true',
help='save as raster')
args_parser.add_argument('--debug','-d', action='store_true',
help='hold for debugging')
args_parser.add_argument('--polar','-p', action='store_true',
help='do polar plotting (wide bandwidth)')
args_parser.add_argument('--headless','-q', action='store_true',
help='Remain neadless even if we aren\'t saving files.')
args_parser.add_argument('-n', type=int, default=4,
help='plot testing number')
args_parser.add_argument('-c', type=int, default=16,
help='number of phase states [16,32,64]')
args = args_parser.parse_args()
################################################################################
if args.raster:
args.save = True
fig_ext = 'png'
else:
fig_ext = 'pdf'
################################################################################
HEADLESS = not 'DISPLAY' in os.environ.keys()
if args.headless: HEADLESS = True # Override Manually if request
if HEADLESS: matplotlib.use('Agg')
from matplotlib import rcParams, pyplot as pp
import skrf as rf
from scipy.io import loadmat
from collections import namedtuple
import LPRDefaultPlotting
from tankComputers import *
import re
import json
################################################################################
# Override the defaults for this script
figScaleSize = 1.0 if args.save else 1.6
rcParams['figure.figsize'] = [3.4*figScaleSize,3*figScaleSize]
default_window_position=['+20+80', '+120+80']
################################################################################
SRC_DATA_NAMES = [\
'Data_2018-05-15-clean',
'Data_2018-05-16-clean',
'Data_2018-05-21-clean',
'Data_2018-05-25-clean']
SRC_DATA_INDEX = args.n-1
SRC_DATA_NAME = SRC_DATA_NAMES[SRC_DATA_INDEX]
#SRC_DATA_DATESTR = '-'.join(SRC_DATA_NAME.split('_')[1].split('-')[:-1])
SRC_DATA_LOC = '/media/ramdisk/' + SRC_DATA_NAME + '/';
SRC_DATA_SUMMARY = '/home/luke/Dropbox/Grad School/1801_PS/' \
'2018-05_Testing/results_plot/dat_clean/' + SRC_DATA_NAME + '_sum.json';
if args.polar:
FILE_PAT = '%s-trunk2.s2p';
else:
FILE_PAT = '%s-trunk.s2p';
figdir = 'figures-measured'
if args.c != 16:
figdir=figdir+('-%d' % args.c)
class MeasurementConfig(namedtuple('config', ['r','c','inv','bias'])):
__slots__ = ()
@property
def fn_str(self):
return "C%02d_R%1d_I%1d_B%0.4f" % (self.c, self.r, self.inv, self.bias)
Measurement = namedtuple('measurement', ['cfg', 'pwr','gain','phase','f','s21', 'slope'])
plottingBandwidthMax = 2.01
plottingBandwidthFreq = 28+np.array([-1,1])*0.5*plottingBandwidthMax
slopeBandwidthMax = 1
slopeBandwidthFreq = 28+np.array([-1,1])*0.5*slopeBandwidthMax
def dB20(x):
return 20*np.log10(np.abs(x))
def ang_deg(x):
return 180/np.pi*np.angle(x)
def ang(x):
return np.angle(x)
BDE=namedtuple('BufferDeEmbed',['mstr','PolyGain','PolyPhase','PhiFix','test'])
BDE_list=[]
# 2018-05-15
BDE_list.append(BDE(
'2018-05-15',
np.array([ 4.06488853e-03, -5.11527396e-01, 2.53053550e+01]),
np.array([-1.62202706e-03, 6.94343608e-01, -1.80381551e+02]),
-60,
'S02bB_C+01dB_M0'
))
# 2018-05-16
BDE_list.append(BDE(
'2018-05-16',
np.array([ 4.08875413e-03, -5.13017311e-01, 2.54047949e+01]),
np.array([-1.29541398e-03, 6.74431785e-01, -1.80127388e+02]),
-60,
'S02bB_C+00dB_M0'
))
# 2018-05-21
#PolyGain=np.array( [ 4.08875413e-03, -5.13017311e-01, 2.54047949e+01])
#PolyPhase=np.array([-1.29541398e-03, 6.74431785e-01, -1.80127388e+02])
BDE_list.append(BDE(
'2018-05-21',
np.array([ 4.08875413e-03, -5.13017311e-01, 2.54047949e+01]),
np.array([-1.29541398e-03, 6.74431785e-01, -1.80127388e+02]),
-60,
'S02bB_C+00dB_M0'
))
# 2018-05-25
#PolyGain=np.array( [ 4.06488853e-03, -5.11527396e-01, 2.53053550e+01])
#PolyPhase=np.array([-1.62202706e-03, 6.94343608e-01, -1.80381551e+02])
BDE_list.append(BDE(
'2018-05-25',
np.array([ 4.06488853e-03, -5.11527396e-01, 2.53053550e+01]),
np.array([-1.62202706e-03, 6.94343608e-01, -1.80381551e+02]),
-70,
'S02bB_C+00dB_M0'
))
source_directory='fromMat/figures-%d/%s_mat/' % (args.c, SRC_DATA_NAME)
for BDEx in BDE_list:
if re.search(BDEx.mstr, source_directory) != None:
PolyGain=BDEx.PolyGain
PolyPhase=BDEx.PolyPhase
PhaseFixedRotationFactor=BDEx.PhiFix
StopTestString=BDEx.test
FamStr=BDEx.mstr
break
################################################################################
################################################################################
################################################################################
# FIXME ########################################################################
################################################################################
################################################################################
################################################################################
PolyGain_balun=np.array([0, 0, -7])
PolyPhase_balun=np.array([0, 0, 0])
################################################################################
################################################################################
################################################################################
################################################################################
if args.c == 64:
StopTestString='S05bB_C+05dB_M0_-64'
elif args.c == 32:
StopTestString='S03bB_C+00dB_M0_-32'
with open(SRC_DATA_SUMMARY, 'r') as h_sumDat:
sumDat = json.load(h_sumDat)
def fetchSumDat_pwr(cfg):
global sumDat
mR = np.array(sumDat['r']) == cfg.r
mC = np.array(sumDat['c']) == cfg.c
mI = np.array(sumDat['inv']) == cfg.inv
mB = np.abs(np.array(sumDat['bias_dp_set'])-cfg.bias) < 0.0005
ind = np.squeeze(np.where(np.all((mR,mC,mI,mB),0)))
if ind.size == 0:
print("ERROR EVERYTHING IS BROKEN! AND i'M TIRED")
return -1
else:
return sumDat['ivdd'][ind]*sumDat['vdd'][ind]
def sumTuple_avgMinMax(data_list):
existing_data = []
for datum in data_list:
existing_data.extend([np.mean(datum), np.min(datum), np.max(datum)])
return tuple(existing_data)
combined_rms=np.array([])
for filename in os.listdir(source_directory):
filename=source_directory+filename
group_filename_string = filename.split('/')[-1][:-4]
src = loadmat(filename, struct_as_record=False)
if not HEADLESS and group_filename_string != StopTestString:
# skip until we hit some aribitrary targets
continue
collectedData=[]
for sample in src['data'][0]:
tmp = [sample.__getattribute__(key)[0,0] for key in ['r', 'c', 'inv', 'bias_dp_set']]
pt = MeasurementConfig(r=tmp[0], c=tmp[1], inv=tmp[2], bias=np.float(tmp[3]))
s2p_file = rf.Network(SRC_DATA_LOC + (FILE_PAT % pt.fn_str) )
freq = np.squeeze(s2p_file.f*1e-9)
inds_keep = np.where(np.all((freq >= plottingBandwidthFreq[0],
freq <= plottingBandwidthFreq[1]),0))
sdat_raw = np.squeeze(s2p_file.s21.s)
freq = freq[inds_keep]
sdat_raw = sdat_raw[inds_keep]
buffer_gain = np.polyval(PolyGain,freq)
buffer_phase = np.polyval(PolyPhase,freq)
buffer_phase = buffer_phase - np.mean(buffer_phase) + \
PhaseFixedRotationFactor*np.pi/180
buffer_sdat = np.power(10,buffer_gain/20)*np.exp(1j*buffer_phase)
balun_gain = np.polyval(PolyGain_balun,freq)
balun_phase = np.polyval(PolyPhase_balun,freq)
balun_phase = balun_phase - np.mean(balun_phase)
balun_sdat = np.power(10,balun_gain/20)*np.exp(1j*balun_phase)
sdat = sdat_raw/buffer_sdat/balun_sdat
slope_valid_inds = np.where(np.all((freq >= slopeBandwidthFreq[0],
freq <= slopeBandwidthFreq[1]),0))
sub_angles = np.unwrap(np.angle(sdat[slope_valid_inds]))*180/np.pi
sub_freq = freq[slope_valid_inds]-np.mean(freq[slope_valid_inds])
slope = np.polyfit(sub_freq,sub_angles-np.mean(sub_angles),1)[0]
index_f0 = np.squeeze(np.argwhere(freq==28))
collectedData.append(Measurement(cfg=pt, pwr=fetchSumDat_pwr(pt),
gain=dB20(sdat[index_f0]),
phase=ang_deg(sdat[index_f0]),
f=freq, s21=sdat, slope=slope))
# Find the indicies close to 0 and 180 as my reference curves
phis = np.array([s.phase for s in collectedData])
best_slopes = np.argsort(np.abs(np.mod(phis+90,180)-90))[0:6]
slope_list = np.array([s.slope for s in collectedData])
slope_avg = np.mean(slope_list[best_slopes])
ref_index = np.argmin(np.abs(phis))
unwrapped_ref_phase = 180/np.pi*np.unwrap(ang(collectedData[ref_index].s21))
if args.polar:
h=pp.figure()
ax=h.add_subplot(1,1,1, projection='polar')
else:
h=pp.figure(figsize=(3.4*figScaleSize, 4.5*figScaleSize))
h2=pp.figure(figsize=(3.4*figScaleSize, 2.3*figScaleSize))
ax=h.subplots(2,1)
ax = np.append(ax, h2.subplots(1,1))
ax = np.append(ax, ax[1].twinx())
ax = np.append(ax, ax[2].twinx())
ax = np.append(ax, ax[0].twinx())
summary_msg = \
"/---------------------\/----------------------------------------\\\n"\
"| _C R I _Bias_ || Gain Phase Power |\n"\
"|---------------------||----------------------------------------|\n"
all_sdat = np.column_stack([imeas.s21 for imeas in collectedData])
ang_rms = delta_rms(np.angle(all_sdat), 2*np.pi/args.c)*180/np.pi
gain_pm = gain_error(dB20(all_sdat), index_f0)
gain_rms = rms(dB20(all_sdat), index_f0)
for imeas in collectedData:
if args.polar:
#ax.plot(ang(imeas.s21)-buffer_phase, dB20(imeas.s21)-buffer_gain)
ax.plot(ang(imeas.s21), dB20(imeas.s21))
else:
ax[0].plot(imeas.f, dB20(imeas.s21))
unwrapped_phase = 180/np.pi*np.unwrap(ang(imeas.s21))
#ax[1].plot(imeas.f, unwrapped_phase)
relative_phase_curve = unwrapped_phase-unwrapped_ref_phase
if np.any(relative_phase_curve < 0):
relative_phase_curve += 360
#relative_phase_curve -= 180-22.5/2
ax[1].plot(imeas.f, relative_phase_curve)
#slope_relative = (imeas.f-28)*slope_avg
#ax[2].plot(imeas.f, unwrapped_phase-slope_relative)
ax[2].plot(imeas.f, relative_phase_curve)
pwr_overage = int(2*(imeas.pwr*1e3 - 10))
pwr_string = (int(pwr_overage/2)*"=") + (np.mod(pwr_overage,2)*">")
summary_msg += "| %2d %d %d %.4f || "\
" %+7.1f dB %+9.2f deg %4.1f mW |%s\n" % \
(imeas.cfg.c, imeas.cfg.r, imeas.cfg.inv, imeas.cfg.bias, \
imeas.gain, imeas.phase, imeas.pwr*1e3, pwr_string)
summary_msg += \
"\_____________________/\________________________________________/\n"
pwr_list=np.array([imeas.pwr*1e3 for imeas in collectedData])
gain_list=np.array([imeas.gain for imeas in collectedData])
summary_msg += \
"/ \\\n" \
"|===> Power: % 7.1f mW (% 7.1f mW - % 7.1f mW) |\n" \
"|===> Gain: %+7.1f dB (%+7.1f dB - %+7.1f dB) | \n" \
"|===> RMS: %6.1f deg (%6.1f deg - %6.1f deg) | \n" \
"\_______________________________________________________________/" % \
(sumTuple_avgMinMax([pwr_list, gain_list, ang_rms]))
print(group_filename_string, sumTuple_avgMinMax([ang_rms]))
if args.polar:
ax.set_ylim(LPRDefaultPlotting.POLAR_YLIM_CONST_MEAS)
if args.polar:
ax.set_title('Measured Performance')
else:
# Usually this also has crappy lower ylimits, so we fix that here.
# get ALL THE LOWER bounds
np.min([np.min(line.get_ydata()) for line in ax[2].get_lines()])
ax[0].set_title('Measured Performance')
ax[0].set_ylabel('Gain (dB)')
######### FIXME ########################################################
#ax[0].set_ylim(np.array([-17.5, 2.5]))
ax[0].set_ylim(np.array([-20, 0]))
ax[1].set_ylabel('Relative Phase (deg)')
ax[2].set_ylabel('Relative Phase (deg)')
ax[2].set_title('Relative Phase')
ax[1].set_ylim(np.array([-100, 360]))
ax[2].set_ylim(np.array([-100, 360]))
marker_freq = 28.1
LPRDefaultPlotting.annotateArrow(ax[0], -4, \
[marker_freq+0.05+0.02, marker_freq+0.15+0.02], direction='left')
for i in [5]:
aT=ax[i]
aR=ax[0]
#aT.plot(imeas.f, gain_pm)
aT.plot(imeas.f, gain_rms)
for axTLi,axTL in enumerate(aT.get_lines()):
axTL.set_linewidth(2.0)
axTL.set_color('black')
if axTLi == 0:
axTL.set_linestyle('-.')
else:
axTL.set_linestyle(':')
aT.set_ylabel('RMS Gain Variation (dB)')
marker_freq = 27.7
marker_point = np.argmin(np.abs(imeas.f-marker_freq))
marker_height = gain_pm[marker_point]
marker_height = gain_rms[marker_point]
LPRDefaultPlotting.annotateArrow(aT, marker_height+0.5, \
[marker_freq+0.05+0.02, marker_freq+0.15+0.02])
aT.set_ylim((aR.get_ylim()/np.array(1)+20)/1)
aT.set_yticks([x for x in aT.get_yticks() if x <= 7.5])
aR.set_yticks([x for x in aR.get_yticks() if x >= -17.5])
aT.grid()
######### FIXME ########################################################
for i in range(3,5):
aT=ax[i]
aR=ax[i-2]
# make the ticks, and the y-axis line up in a tidy manner
# Recall that the ylimits should be 0-360 basically.
aT.set_ylabel('RMS Error (deg)')
aT.plot(imeas.f, ang_rms)
#marker_freq = 27.5
#marker_freq = 28.3
marker_freq = 27.8
marker_point = np.argmin(np.abs(imeas.f-marker_freq))
marker_height = ang_rms[marker_point]+2
# The goal is to take the usual step size of 50,
# and then equate that with a 1-degree step in RMS Error
# and to then adjust the y-limit of the twin-axis to align
# the grid markers
if False:
yRscl=np.diff(aR.get_yticks()[-2:])
yTscl=np.diff(aT.get_yticks()[-2:])
# Now find the ratio of the ylimits margin verses their
# extreme tick marks.
yRmrks = aR.get_yticks()[[0,-1]]
yTmrks = aT.get_yticks()[[0,-1]]
tickTotal = max(len(aT.get_yticks()), len(aR.get_yticks()))
yRover = (aR.get_ylim()-yRmrks)/yRscl
yTover = (aT.get_ylim()-yTmrks)/yTscl
yRTover = np.stack((yRover,yTover))
yXover = np.array([np.min(yRTover[:,0]), np.max(yRTover[:,1])])
aR.set_ylim(yRscl*yXover + yRmrks)
aT.set_ylim(yTscl*yXover + yTmrks)
#aT.set_ylim(aR.get_ylim()/np.array(20)+9)
aT.set_yticks(np.arange(0,11,5))
aR.set_yticks(np.arange(0,361,60))
aT.set_ylim((0,50))
aR.set_ylim((-90,360))
aT.grid()
LPRDefaultPlotting.addHalfTicks(aT)
LPRDefaultPlotting.addHalfTicks(aR)
aT.get_lines()[0].set_linewidth(2.0)
aT.get_lines()[0].set_linestyle('-.')
aT.get_lines()[0].set_color('black')
LPRDefaultPlotting.annotateArrow(aT, marker_height-0.5, \
[marker_freq+0.05, marker_freq+0.15])
#ax[5].set_ylim(np.array([0, 20]))
#ax[3].set_ylim(np.array([0, 42]))
#ax[3].set_ylim(np.array([0, 23]))
for aT in ax:
aT.set_xlabel('Frequency (GHz)')
aT.grid()
#aT.set_xlim((np.min(imeas.f), np.max(imeas.f)))
#aT.set_xlim((28-1.0, 28+1.0))
aT.set_xlim((28-0.5, 28+0.5))
if args.polar:
old_pos = ax.title.get_position()
ax.title.set_position((old_pos[0], 1.1))
h.tight_layout()
if not args.polar:
h2.tight_layout()
if args.save:
with open('%s/Summary-%s-%s.txt' % (figdir, FamStr,
group_filename_string), 'w') as summary_file:
summary_file.write(summary_msg)
summary_file.write("\n")
summary_file.close()
if args.polar:
h.savefig('%s/PolarGain-%s-%s.%s' % (figdir, FamStr,
group_filename_string, fig_ext))
else:
h.savefig('%s/StdPlots-%s-%s.%s' % (figdir, FamStr,
group_filename_string, fig_ext))
h2.savefig('%s/RelStdPlots-%s-%s.%s' % (figdir, FamStr,
group_filename_string, fig_ext))
else:
print(summary_msg)
if HEADLESS:
if not args.polar:
pp.close()
pp.close()
else:
if not args.polar:
h2.show()
h.show()
break