404 lines
12 KiB
Python
Executable file
404 lines
12 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
|
|
import numpy as np
|
|
import matplotlib
|
|
import argparse
|
|
import os
|
|
import code
|
|
import pdb
|
|
################################################################################
|
|
args_parser = argparse.ArgumentParser()
|
|
args_parser.add_argument('-n', type=int, default=1,
|
|
help='plot testing number')
|
|
args_parser.add_argument('--save','-s', action='store_true',
|
|
help='save to files')
|
|
args_parser.add_argument('--raster','-r', action='store_true',
|
|
help='save as raster')
|
|
args_parser.add_argument('--debug','-d', action='store_true',
|
|
help='hold for debugging')
|
|
args_parser.add_argument('--subplot', action='store_true',
|
|
help='use subplots when available')
|
|
args_parser.add_argument('--headless','-q', action='store_true',
|
|
help='Remain neadless even if we aren\'t saving files.')
|
|
args = args_parser.parse_args()
|
|
|
|
#exit()
|
|
|
|
HEADLESS = not 'DISPLAY' in os.environ.keys()
|
|
if args.headless: HEADLESS = True # Override Manually if request
|
|
if HEADLESS: matplotlib.use('Agg')
|
|
|
|
################################################################################
|
|
from matplotlib import rcParams, pyplot as pp
|
|
import LPRDefaultPlotting
|
|
|
|
figdir = LPRDefaultPlotting.figures_directory
|
|
if args.save: os.makedirs(figdir, exist_ok=True)
|
|
|
|
import sys
|
|
|
|
sys.path.append("./pySmithPlot")
|
|
import smithplot
|
|
from smithplot import SmithAxes
|
|
SmithAxes.update_scParams(axes_normalize=False,
|
|
grid_minor_fancy_threshold=50, axes_radius=0.5)
|
|
|
|
plot_list = [args.n]
|
|
|
|
if args.raster:
|
|
args.save = True
|
|
fig_ext = 'png'
|
|
else:
|
|
fig_ext = 'pdf'
|
|
|
|
################################################################################
|
|
# Override the defaults for this script
|
|
figScaleSize = 1.0 if args.save else 1.6
|
|
if args.subplot:
|
|
rcParams['figure.figsize'] = [3.4*figScaleSize,4*figScaleSize]
|
|
else:
|
|
rcParams['figure.figsize'] = [3.4*figScaleSize,2.25*figScaleSize]
|
|
default_window_position=['+20+80', '+120+80']
|
|
|
|
################################################################################
|
|
# Operating Enviornment (i.e. circuit parameters)
|
|
import TankGlobals
|
|
from FreqClass import FreqClass
|
|
from tankComputers import *
|
|
freq_pts = 501
|
|
|
|
S=TankGlobals.ampSystem()
|
|
B=TankGlobals.bufferSystem()
|
|
|
|
S.q1_L = 15
|
|
if plot_list[0] in [11, 12, 13, 14]:
|
|
gain_variation = +4 # dB
|
|
else:
|
|
gain_variation = 0 # dB
|
|
|
|
if plot_list[0] in [14, 4, 5]:
|
|
S.bw_plt = 0.5
|
|
B.bw_plt = S.bw_plt
|
|
freq_pts = 51
|
|
if plot_list[0] == 5:
|
|
S.set_g1_swp(TankGlobals.g1_map_flat)
|
|
S.set_gamma_swp(TankGlobals.gamma_map_flat)
|
|
|
|
f=FreqClass(freq_pts, S.f0, S.bw_plt)
|
|
|
|
################################################################################
|
|
# We want a smooth transition out to alpha. So For now assume a squares
|
|
# weighting out to the maximum alpha at the edges.
|
|
# This gain variation function is the default function baked into the method.
|
|
#gain_variation = 0 # dB
|
|
S.alpha_min = dB2Vlt(gain_variation)
|
|
|
|
# and compute how much of a negative gm this requres, and it's relative
|
|
# proportion to the gm of the assumed main amplifier gm.
|
|
g1_boost = (S.g1_swp - S.g1)
|
|
g1_ratio = -g1_boost / S.gm1
|
|
|
|
print(' Max G1 boost %.2fmS (%.1f%% of gm1)' % \
|
|
(1e3*np.max(np.abs(g1_boost)), 100*np.max(g1_ratio)))
|
|
|
|
################################################################################
|
|
# Extract the computed tank conductanec, and the transfer functions.
|
|
(y_tank, tf) = S.compute_block(f)
|
|
(_, tf_ref) = S.compute_ref(f)
|
|
|
|
# To produce full 360 dgree plots, double the two transfer functions by
|
|
# considering inversion.
|
|
# double to describe with perfect inversion stage
|
|
tf = np.column_stack((tf,-tf))
|
|
|
|
# compute the relative transfer function thus giving us flat phase, and
|
|
# flat (ideally) gain response if our system perfectly matches the reference
|
|
tf_r = tf / (tf_ref*np.ones((tf.shape[1],1))).T
|
|
|
|
# We will also do a direct angle comparison
|
|
tf_r_ang_ideal = wrap_rads(np.concatenate((-S.phase_swp, -np.pi - S.phase_swp)))
|
|
tf_r_ang = np.angle(tf_r)
|
|
tf_r_ang_rms = np.sqrt(np.mean(np.power(tf_r_ang-tf_r_ang_ideal,2),0))
|
|
|
|
y_tank = y_tank.T
|
|
################################################################################
|
|
# Compute RMS phase error relative to ideal reference across plotting bandwidth
|
|
(bw_ang, rms_ang_swp)=rms_v_bw(tf_r_ang-tf_r_ang_ideal, S.bw_plt)
|
|
(bw_mag, rms_gain_swp)=rms_v_bw(tf_r, S.bw_plt)
|
|
|
|
(y_buf, tf_buf) = B.compute_ref(f)
|
|
|
|
################################################################################
|
|
################################################################################
|
|
################################################################################
|
|
#mgr = pp.get_current_fig_manager()
|
|
|
|
################################################################################
|
|
if 6 in plot_list:
|
|
h6 = pp.figure()
|
|
mgr = pp.get_current_fig_manager()
|
|
ax6 = [h6.subplots(1,1)]
|
|
ax6.append(ax6[0].twinx())
|
|
|
|
axT=ax6[0]
|
|
axT.plot(f.hz,dB20(tf_buf))
|
|
axT.set_ylabel('Gain (dB)')
|
|
axT.set_title('Buffer Response')
|
|
setLimitsTicks(axT, dB20(tf_buf), 6)
|
|
axT=ax6[1]
|
|
axT.plot(f.hz,ang_unwrap(tf_buf))
|
|
axT.set_ylabel('Phase (deg)')
|
|
setLimitsTicks(axT, ang_unwrap(tf_buf), 6)
|
|
|
|
for i,axT in enumerate(ax6):
|
|
if i==0: axT.grid()
|
|
axT.set_xlim(f.hz_range)
|
|
axT.set_xlabel('Frequency (GHz)')
|
|
c_color = LPRDefaultPlotting.COLOR_CYCLE_LIST[i]
|
|
axT.lines[0].set_color(c_color)
|
|
axT.yaxis.label.set_color(c_color)
|
|
axT.tick_params('y', colors=c_color)
|
|
h6.tight_layout()
|
|
if args.save:
|
|
h6.savefig('%s/%s.%s' % (figdir, 'NA-06.0', fig_ext))
|
|
if HEADLESS:
|
|
pp.close()
|
|
else:
|
|
#mgr.window.geometry(default_window_position[0])
|
|
h6.show()
|
|
|
|
################################################################################
|
|
if 1 in plot_list or 11 in plot_list:
|
|
if not args.subplot:
|
|
h1 = [pp.figure() for x in range(2)]
|
|
ax1 = [hT.add_subplot(1,1,1) for hT in h1]
|
|
else:
|
|
h1 = [pp.figure() for x in range(1)]
|
|
ax1 = h1[0].subplots(2,1)
|
|
|
|
ax1[0].plot(f.hz,dB20(tf))
|
|
ax1[1].plot(f.hz,ang_unwrap(tf))
|
|
|
|
ax1[0].set_title('TF Gain')
|
|
ax1[0].set_ylabel('Gain (dB)')
|
|
ax1[1].set_title('TF Phase')
|
|
ax1[1].set_ylabel('Phase (deg)')
|
|
|
|
for axT in ax1:
|
|
axT.grid()
|
|
axT.set_xlabel('Freq (GHz)')
|
|
axT.set_xlim(f.hz_range)
|
|
|
|
[hT.tight_layout() for hT in h1]
|
|
if 11 in plot_list:
|
|
for hT in h1:
|
|
LPRDefaultPlotting.figAnnotateCorner(hT,
|
|
'%g dB gain variation' % (gain_variation))
|
|
|
|
if args.save:
|
|
if 11 in plot_list:
|
|
if args.subplot:
|
|
h1[0].savefig('%s/%s.%s' % (figdir,
|
|
'01d-ideal-AbsGainPhase-wgv', fig_ext))
|
|
else:
|
|
h1[0].savefig('%s/%s.%s' % (figdir,
|
|
'010-AbsGain-wgv', fig_ext))
|
|
h1[1].savefig('%s/%s.%s' % (figdir,
|
|
'011-AbsPhase-wgv', fig_ext))
|
|
else:
|
|
if args.subplot:
|
|
h1[0].savefig('%s/%s.%s' % (figdir,
|
|
'01d-ideal-AbsGainPhase', fig_ext))
|
|
else:
|
|
h1[0].savefig('%s/%s.%s' % (figdir,
|
|
'010-AbsGain', fig_ext))
|
|
h1[1].savefig('%s/%s.%s' % (figdir,
|
|
'011-AbsPhase', fig_ext))
|
|
if HEADLESS:
|
|
pp.close()
|
|
else:
|
|
#mgr.window.geometry(default_window_position[0])
|
|
[hT.show() for hT in h1]
|
|
|
|
if 4 in plot_list or 14 in plot_list:
|
|
h4 = [pp.figure(figsize=(3.4,3)) for x in range(2)]
|
|
ax4 = []
|
|
ax4.append(h4[0].add_subplot(1,1,1, projection='smith'))
|
|
ax4.append(h4[1].add_subplot(1,1,1, projection='polar'))
|
|
|
|
ax4[0].plot(y_tank, datatype=SmithAxes.Y_PARAMETER, marker="None")
|
|
ax4[1].plot(np.angle(tf), dB20(tf))
|
|
|
|
ax4[0].set_title('Tank Impedance')
|
|
ax4[1].set_title('Transfer Function')
|
|
|
|
# Adjust placement of smith plot
|
|
old_pos = ax4[0].title.get_position()
|
|
ax4[0].title.set_position((old_pos[0], 1.06))
|
|
p = ax4[0].get_position()
|
|
p.set_points([[0, 0.07],[1, 0.86]])
|
|
ax4[0].set_position(p)
|
|
|
|
old_pos = ax4[1].title.get_position()
|
|
ax4[1].title.set_position((old_pos[0], 1.1))
|
|
h4[1].tight_layout()
|
|
|
|
if 14 in plot_list:
|
|
for hT in h4:
|
|
LPRDefaultPlotting.figAnnotateCorner(hT,
|
|
'%g dB gain variation' % (gain_variation))
|
|
#[hT.tight_layout() for hT in h4]
|
|
if args.save:
|
|
if 14 in plot_list:
|
|
h4[0].savefig('%s/%s.%s' % (figdir,
|
|
'040-ideal-smith_tank_impedance-wgv', fig_ext))
|
|
h4[1].savefig('%s/%s.%s' % (figdir,
|
|
'041-ideal-polar_gain_plot-wgv', fig_ext))
|
|
else:
|
|
h4[0].savefig('%s/%s.%s' % (figdir,
|
|
'040-ideal-smith_tank_impedance', fig_ext))
|
|
h4[1].savefig('%s/%s.%s' % (figdir,
|
|
'041-ideal-polar_gain_plot', fig_ext))
|
|
if HEADLESS:
|
|
pp.close()
|
|
else:
|
|
#mgr.window.geometry(default_window_position[0])
|
|
[hT.show() for hT in h4]
|
|
|
|
if 5 in plot_list:
|
|
h5 = [pp.figure(figsize=(3.4,3.4)) for x in range(2)]
|
|
ax5 = []
|
|
ax5.append(h5[0].add_subplot(1,1,1, projection='smith'))
|
|
ax5.append(h5[1].add_subplot(1,1,1, projection='polar'))
|
|
|
|
ax5[0].plot(y_tank, datatype=SmithAxes.Y_PARAMETER, marker="None")
|
|
ax5[1].plot(np.angle(tf), dB20(tf))
|
|
|
|
ax5[0].set_title('Tank Impedance')
|
|
ax5[1].set_title('Transfer Function')
|
|
|
|
old_pos = ax5[1].title.get_position()
|
|
ax5[1].title.set_position((old_pos[0], 1.1))
|
|
h5[1].tight_layout()
|
|
#[hT.tight_layout() for hT in h5]
|
|
if args.save:
|
|
h5[0].savefig('%s/%s.%s' % (figdir,
|
|
'050-ideal-flat_g1-smith_tank_impedance', fig_ext))
|
|
h5[1].savefig('%s/%s.%s' % (figdir,
|
|
'050-ideal-flat_g1-polar_gain_plot', fig_ext))
|
|
if HEADLESS:
|
|
pp.close()
|
|
else:
|
|
#mgr.window.geometry(default_window_position[0])
|
|
[hT.show() for hT in h5]
|
|
|
|
################################################################################
|
|
if 2 in plot_list or 12 in plot_list:
|
|
if not args.subplot:
|
|
h2 = [pp.figure() for x in range(2)]
|
|
ax2 = [hT.add_subplot(1,1,1) for hT in h2]
|
|
else:
|
|
h2 = [pp.figure() for x in range(1)]
|
|
ax2 = h2[0].subplots(2,1)
|
|
|
|
ax2[0].plot(f.hz,dB20(tf_r))
|
|
setLimitsTicks(ax2[0], dB20(tf_r), 6)
|
|
ax2[1].plot(f.hz,ang_unwrap(tf_r.T).T)
|
|
setLimitsTicks(ax2[1], ang_unwrap(tf_r.T), 6)
|
|
|
|
ax2[0].set_title('Relative Gain')
|
|
ax2[0].set_ylabel('Gain (dB)')
|
|
ax2[1].set_title('Relative Phase')
|
|
ax2[1].set_ylabel('Phase (deg)')
|
|
|
|
for axT in ax2:
|
|
axT.grid()
|
|
axT.set_xlabel('Freq (GHz)')
|
|
axT.set_xlim(f.hz_range)
|
|
[hT.tight_layout() for hT in h2]
|
|
if 12 in plot_list:
|
|
for hT in h2:
|
|
LPRDefaultPlotting.figAnnotateCorner(hT,
|
|
'%g dB gain variation' % (gain_variation))
|
|
|
|
if args.save:
|
|
if 12 in plot_list:
|
|
if not args.subplot:
|
|
h2[0].savefig('%s/%s.%s' % (figdir,
|
|
'020-TF_RelativeGainPhase-wgv', fig_ext))
|
|
h2[1].savefig('%s/%s.%s' % (figdir,
|
|
'021-TF_RelativePhase-wgv', fig_ext))
|
|
else:
|
|
h2[0].savefig('%s/%s.%s' % (figdir,
|
|
'02d-TF_RelativeGain-gv', fig_ext))
|
|
else:
|
|
if not args.subplot:
|
|
h2[0].savefig('%s/%s.%s' % (figdir,
|
|
'020-TF_RelativeGainPhase', fig_ext))
|
|
h2[1].savefig('%s/%s.%s' % (figdir,
|
|
'021-TF_RelativePhase', fig_ext))
|
|
else:
|
|
h2[0].savefig('%s/%s.%s' % (figdir,
|
|
'02d-TF_RelativeGain', fig_ext))
|
|
if HEADLESS:
|
|
pp.close()
|
|
else:
|
|
#mgr.window.geometry(default_window_position[0])
|
|
[hT.show() for hT in h2]
|
|
|
|
################################################################################
|
|
if 3 in plot_list or 13 in plot_list:
|
|
if not args.subplot:
|
|
h3 = [pp.figure() for x in range(2)]
|
|
ax3 = [hT.add_subplot(1,1,1) for hT in h3]
|
|
else:
|
|
h3 = [pp.figure() for x in range(1)]
|
|
ax3 = h3[0].subplots(2,1)
|
|
|
|
ax3[0].plot(bw_mag,dB20(rms_gain_swp))
|
|
ax3[1].plot(bw_ang,rms_ang_swp*180/np.pi)
|
|
|
|
ax3[0].set_title('RMS Gain Error')
|
|
ax3[0].set_ylabel('RMS Gain Error (dB)')
|
|
ax3[1].set_title('RMS Phase Error')
|
|
ax3[1].set_ylabel('RMS Phase Error (deg)')
|
|
|
|
for axT in ax3:
|
|
axT.grid()
|
|
axT.set_xlim((0,S.bw_plt))
|
|
axT.set_xlabel('Bandwidth (GHz)')
|
|
|
|
[hT.tight_layout() for hT in h3]
|
|
[hT.tight_layout() for hT in h3]
|
|
if 13 in plot_list:
|
|
for hT in h3:
|
|
LPRDefaultPlotting.figAnnotateCorner(hT,
|
|
'%g dB gain variation' % (gain_variation))
|
|
|
|
if args.save:
|
|
if 13 in plot_list:
|
|
if not args.subplot:
|
|
h3[0].savefig('%s/%s.%s' % (figdir, '030-RMSGain-wgv', fig_ext))
|
|
h3[1].savefig('%s/%s.%s' % (figdir, '031-RMSPhase-wgv', fig_ext))
|
|
else:
|
|
h3[0].savefig('%s/%s.%s' % (figdir, '03d-RMSBoth-wgv', fig_ext))
|
|
else:
|
|
if not args.subplot:
|
|
h3[0].savefig('%s/%s.%s' % (figdir, '030-RMSGain', fig_ext))
|
|
h3[1].savefig('%s/%s.%s' % (figdir, '031-RMSPhase', fig_ext))
|
|
else:
|
|
h3[0].savefig('%s/%s.%s' % (figdir, '03d-RMSBoth', fig_ext))
|
|
if HEADLESS:
|
|
pp.close()
|
|
else:
|
|
#mgr.window.geometry(default_window_position[0])
|
|
[hT.show() for hT in h3]
|
|
|
|
if args.debug:
|
|
print("")
|
|
print("#"*80)
|
|
print("# Finished execution.")
|
|
print("# Debugging Mode active.")
|
|
print("# Falling back to an interactive prompt.")
|
|
print("#"*80)
|
|
code.interact(local=dict(globals(), **locals()))
|