113 lines
3 KiB
Python
113 lines
3 KiB
Python
#!/usr/bin/env python3
|
|
|
|
import numpy as np
|
|
from matplotlib import rcParams, pyplot as pp
|
|
|
|
rcParams['figure.figsize'] = [10,7]
|
|
default_window_position='+20+80'
|
|
|
|
import sys
|
|
sys.path.append("./pySmithPlot")
|
|
import smithplot
|
|
from smithplot import SmithAxes
|
|
################################################################################
|
|
# Operating Enviornment
|
|
#####
|
|
f0 = 28
|
|
bw0 = 6.5 # assumed tuning range (GHz)
|
|
bw_plt = 0.5 # Plotting range (GHz)
|
|
fbw = bw0/f0 # fractional bandwidth
|
|
|
|
frequency_sweep_steps = 101
|
|
gamma_sweep_steps = 11
|
|
|
|
gamma = 1 - np.power(f0 / (f0 + bw0/2),2)
|
|
gamma_limit_ratio = 0.99 # how close gamma can get to theoretical extreme
|
|
|
|
# Configuration Of Hardware
|
|
#####
|
|
q1_L = 10
|
|
q1_C = 10
|
|
l1 = 100e-3 # nH
|
|
gm1 = 25e-3 # S
|
|
|
|
# Compute frequency sweep
|
|
#####
|
|
w0 = f0*2*np.pi
|
|
fbw_plt = bw_plt/f0
|
|
delta = np.linspace(-fbw_plt/2,fbw_plt/2,frequency_sweep_steps)
|
|
w = w0*(1+delta)
|
|
f = f0*(1+delta)
|
|
jw = 1j*w
|
|
|
|
##################
|
|
# Compute system
|
|
#####
|
|
c1 = 1/(w0*w0*l1)
|
|
g1_L = 1 / (q1_L*w0*l1)
|
|
g1_C = w0 * c1 / q1_C
|
|
g1 = g1_L + g1_C
|
|
|
|
# Verify gamma is valid
|
|
#####
|
|
gamma_max = g1 * np.sqrt(l1/c1)
|
|
if gamma > (gamma_limit_ratio * gamma_max):
|
|
print("==> WARN: Gamma to large, reset to %.3f (was %.3f) <==" % \
|
|
(gamma_max_cap*gamma_max, gamma))
|
|
gamma = gamma_max_cap*gamma_max
|
|
|
|
gamma_swp = np.linspace(-gamma,gamma,gamma_sweep_steps);
|
|
# compute correction factor for g1 that will produce common gain at f0
|
|
g1_swp = np.sqrt( g1*g1 - (gamma_swp*gamma_swp) * c1/l1 )
|
|
# and compute how much of a negative gm this requres, and it's relative
|
|
# proportion to the gm of the assumed main amplifier gm.
|
|
g1_boost = (g1_swp - g1)
|
|
g1_ratio = -g1_boost / gm1
|
|
|
|
c1_swp = c1 * (1 + gamma_swp)
|
|
|
|
## Report System Descrption
|
|
print(' L1 = %.3fpH, C1 = %.3ffF' % (1e3*l1, 1e6*c1))
|
|
print(' Rp = %.3f Ohm' % (1/g1))
|
|
print(' Max G1 boost %.2fmS (%.1f%% of gm1)' % \
|
|
(1e3*np.max(np.abs(g1_boost)), 100*np.max(g1_ratio)))
|
|
|
|
def db(volt_tf):
|
|
return 20*np.log10(np.abs(volt_tf))
|
|
def ang(volt_tf):
|
|
return 180/np.pi*np.angle(volt_tf)
|
|
|
|
#y_tank=np.zeros((len(delta),len(gamma_swp)))
|
|
h = pp.figure()
|
|
mgr = pp.get_current_fig_manager()
|
|
ax1 = h.add_subplot(2,2,(1,3), projection='smith')
|
|
ax3 = h.add_subplot(2,2,2)
|
|
ax4 = h.add_subplot(2,2,4)
|
|
for itune,gamma_tune in enumerate(gamma_swp):
|
|
c1_tune = c1_swp[itune]
|
|
g1_tune = g1_swp[itune]
|
|
K = np.sqrt(c1/l1)/g1_tune
|
|
y_tank = g1_tune + jw*c1_tune + 1/(jw * l1)
|
|
#print(1/np.mean(np.abs(y_tank)))
|
|
ax1.plot(y_tank, datatype=SmithAxes.Y_PARAMETER, marker="None")
|
|
tf = gm1 / g1_tune * \
|
|
1j*(1+delta) / \
|
|
( 1j*(1+delta) + K*(1 - (1+gamma_tune)*np.power(1+delta,2)) )
|
|
ax3.plot(f,db(tf))
|
|
ax4.plot(f,ang(tf))
|
|
|
|
################################################################################
|
|
ax1.set_title('Tank Impedance')
|
|
|
|
ax3.set_title('TF Gain')
|
|
ax3.set_ylabel('Gain (dB)')
|
|
ax4.set_title('TF Phase')
|
|
ax3.set_ylabel('Phase (deg)')
|
|
for ax_T in [ax3, ax4]:
|
|
ax_T.grid()
|
|
ax_T.set_xlabel('Freq (GHz)')
|
|
ax_T.set_xlim(( np.min(f), np.max(f) ))
|
|
|
|
h.tight_layout()
|
|
mgr.window.geometry(default_window_position)
|
|
h.show()
|