ps_plotter/tankPlot.py
Luke 190ca4ded5 Inital comit.
Basic transfer function and tank impedance plotting
2018-07-17 18:33:39 -07:00

113 lines
3 KiB
Python

#!/usr/bin/env python3
import numpy as np
from matplotlib import rcParams, pyplot as pp
rcParams['figure.figsize'] = [10,7]
default_window_position='+20+80'
import sys
sys.path.append("./pySmithPlot")
import smithplot
from smithplot import SmithAxes
################################################################################
# Operating Enviornment
#####
f0 = 28
bw0 = 6.5 # assumed tuning range (GHz)
bw_plt = 0.5 # Plotting range (GHz)
fbw = bw0/f0 # fractional bandwidth
frequency_sweep_steps = 101
gamma_sweep_steps = 11
gamma = 1 - np.power(f0 / (f0 + bw0/2),2)
gamma_limit_ratio = 0.99 # how close gamma can get to theoretical extreme
# Configuration Of Hardware
#####
q1_L = 10
q1_C = 10
l1 = 100e-3 # nH
gm1 = 25e-3 # S
# Compute frequency sweep
#####
w0 = f0*2*np.pi
fbw_plt = bw_plt/f0
delta = np.linspace(-fbw_plt/2,fbw_plt/2,frequency_sweep_steps)
w = w0*(1+delta)
f = f0*(1+delta)
jw = 1j*w
##################
# Compute system
#####
c1 = 1/(w0*w0*l1)
g1_L = 1 / (q1_L*w0*l1)
g1_C = w0 * c1 / q1_C
g1 = g1_L + g1_C
# Verify gamma is valid
#####
gamma_max = g1 * np.sqrt(l1/c1)
if gamma > (gamma_limit_ratio * gamma_max):
print("==> WARN: Gamma to large, reset to %.3f (was %.3f) <==" % \
(gamma_max_cap*gamma_max, gamma))
gamma = gamma_max_cap*gamma_max
gamma_swp = np.linspace(-gamma,gamma,gamma_sweep_steps);
# compute correction factor for g1 that will produce common gain at f0
g1_swp = np.sqrt( g1*g1 - (gamma_swp*gamma_swp) * c1/l1 )
# and compute how much of a negative gm this requres, and it's relative
# proportion to the gm of the assumed main amplifier gm.
g1_boost = (g1_swp - g1)
g1_ratio = -g1_boost / gm1
c1_swp = c1 * (1 + gamma_swp)
## Report System Descrption
print(' L1 = %.3fpH, C1 = %.3ffF' % (1e3*l1, 1e6*c1))
print(' Rp = %.3f Ohm' % (1/g1))
print(' Max G1 boost %.2fmS (%.1f%% of gm1)' % \
(1e3*np.max(np.abs(g1_boost)), 100*np.max(g1_ratio)))
def db(volt_tf):
return 20*np.log10(np.abs(volt_tf))
def ang(volt_tf):
return 180/np.pi*np.angle(volt_tf)
#y_tank=np.zeros((len(delta),len(gamma_swp)))
h1 = pp.figure()
mgr = pp.get_current_fig_manager()
ax1 = h.add_subplot(2,2,(1,3), projection='smith')
ax3 = h.add_subplot(2,2,2)
ax4 = h.add_subplot(2,2,4)
for itune,gamma_tune in enumerate(gamma_swp):
c1_tune = c1_swp[itune]
g1_tune = g1_swp[itune]
K = np.sqrt(c1/l1)/g1_tune
y_tank = g1_tune + jw*c1_tune + 1/(jw * l1)
#print(1/np.mean(np.abs(y_tank)))
ax1.plot(y_tank, datatype=SmithAxes.Y_PARAMETER, marker="None")
tf = gm1 / g1_tune * \
1j*(1+delta) / \
( 1j*(1+delta) + K*(1 - (1+gamma_tune)*np.power(1+delta,2)) )
ax3.plot(f,db(tf))
ax4.plot(f,ang(tf))
################################################################################
ax1.set_title('Tank Impedance')
ax3.set_title('TF Gain')
ax3.set_ylabel('Gain (dB)')
ax4.set_title('TF Phase')
ax3.set_ylabel('Phase (deg)')
for ax_T in [ax3, ax4]:
ax_T.grid()
ax_T.set_xlabel('Freq (GHz)')
ax_T.set_xlim(( np.min(f), np.max(f) ))
h.tight_layout()
mgr.window.geometry(default_window_position)
h.show()