#!/usr/bin/env python3 import numpy as np from matplotlib import rcParams, pyplot as pp import LPRDefaultPlotting import sys sys.path.append("./pySmithPlot") import smithplot from smithplot import SmithAxes ################################################################################ # Define my helper functions. def dB20(volt_tf): """Describe signal gain of a transfer function in dB (i.e. 20log(x))""" return 20*np.log10(np.abs(volt_tf)) def ang(volt_tf): """Describe phase of a transfer function in degrees. Not unwrapped.""" return 180/np.pi*np.angle(volt_tf) def ang_unwrap(volt_tf): """Describe phase of a transfer function in degrees. With unwrapping.""" return 180/np.pi*np.unwrap(np.angle(volt_tf)) def dB10(pwr_tf): """Describe power gain of a transfer function in dB (i.e. 10log(x))""" return 10*np.log10(np.abs(pwr_tf)) def atan(x): return 180/np.pi*np.arctan(x) ################################################################################ # Override the defaults for this script rcParams['figure.figsize'] = [10,7] default_window_position=['+20+80', '+120+80'] ################################################################################ # Operating Enviornment (i.e. circuit parameters) from TankGlobals import * ################################################################################ # Now generate the sweep of resonance tuning (gamma, and capacitance) # Linear based gamma spacing #gamma_swp = np.linspace(-gamma,gamma,gamma_sweep_steps) # Linear PHASE gamma spacing # First compute the most extreme phase given the extreme gamma g1_limit = np.sqrt( g1*g1 - (gamma*gamma) * c1/l1 ) K_limit = np.sqrt(c1/l1)*1/g1_limit phase_limit = np.mod(np.pi/2 - np.arctan( -1/K_limit * 1/gamma ),np.pi) - np.pi if abs(phase_limit) < phase_limit_requested: print("==> WARN: Phase Beyond bounds, leaving at limits. <==") print("==> %.3f requested, but hardware limit is %.3f <==" % \ (180/np.pi*phase_limit_requested, 180/np.pi*abs(phase_limit))) sys.exit(-1) else: phase_limit = phase_limit_requested # This gives us our equal phase spacing points phase_swp = np.linspace(-1,1,gamma_sweep_steps) * phase_limit # Then use this to compute the gamma steps to produce arbitrary phase given # our perfect gain constraint. gamma_swp = np.sign(phase_swp)/np.sqrt(np.power(np.tan(np.pi/2 - phase_swp),2)+1) * g1 / np.sqrt(c1/l1) # compute correction factor for g1 that will produce common gain at f0 g1_swp = np.sqrt( g1*g1 - (gamma_swp*gamma_swp) * c1/l1 ) # and compute how much of a negative gm this requres, and it's relative # proportion to the gm of the assumed main amplifier gm. g1_boost = (g1_swp - g1) g1_ratio = -g1_boost / gm1 c1_swp = c1 * (1 + gamma_swp) ## Report System Descrption print(' L1 = %.3fpH, C1 = %.3ffF' % (1e3*l1, 1e6*c1)) print(' Rp = %.3f Ohm' % (1/g1)) print(' Max G1 boost %.2fmS (%.1f%% of gm1)' % \ (1e3*np.max(np.abs(g1_boost)), 100*np.max(g1_ratio))) y_tank = np.zeros((len(gamma_swp),len(f)), dtype=complex) tf = np.zeros((len(gamma_swp),len(f)), dtype=complex) for itune,gamma_tune in enumerate(gamma_swp): c1_tune = c1_swp[itune] g1_tune = g1_swp[itune] K = np.sqrt(c1/l1)/g1_tune y_tank_tmp = g1_tune + jw*c1_tune + 1/(jw * l1) y_tank[itune,:] = y_tank_tmp tf_tmp = gm1 / g1_tune * \ 1j*(1+delta) / \ ( 1j*(1+delta) + K*(1 - (1+gamma_tune)*np.power(1+delta,2)) ) tf[itune,:] = tf_tmp tf = tf.T # double to describe with perfect inversion stage tf = np.column_stack((tf,-tf)) ref_index = int(gamma_swp.shape[0]/2) tf_r = tf / (tf[:,ref_index]*np.ones((tf.shape[1],1))).T y_tank = y_tank.T print(ang(tf[f==28,:])) ################################################################################ h1 = pp.figure() h2 = pp.figure(figsize=(5,7)) mgr = pp.get_current_fig_manager() ################################################################################ ax1 = h1.add_subplot(2,2,1, projection='smith') ax2 = h1.add_subplot(2,2,3, projection='polar') ax3 = h1.add_subplot(2,2,2) ax4 = h1.add_subplot(2,2,4) ax1.plot(y_tank, datatype=SmithAxes.Y_PARAMETER, marker="None") ax2.plot(np.angle(tf), dB20(tf)) ax3.plot(f,dB20(tf)) ax4.plot(f,ang_unwrap(tf)) ################################################################################ ax8 = h2.add_subplot(2,1,1) ax9 = h2.add_subplot(2,1,2) ax8.plot(f,dB20(tf_r)) ax9.plot(f,ang_unwrap(tf_r.T).T) ax1.set_title('Tank Impedance') ax2.set_title('Transfer Function') ax3.set_title('TF Gain') ax3.set_ylabel('Gain (dB)') ax4.set_title('TF Phase') ax4.set_ylabel('Phase (deg)') ax8.set_title('TF Relative Gain') ax8.set_ylabel('Relative Gain (dB)') ax9.set_title('TF Relative Phase') ax9.set_ylabel('Relative Phase (deg)') for ax_T in [ax3, ax4, ax8, ax9]: ax_T.grid() ax_T.set_xlabel('Freq (GHz)') ax_T.set_xlim(( np.min(f), np.max(f) )) ################################################################################ h1.tight_layout() h2.tight_layout() mgr.window.geometry(default_window_position[0]) h1.show() mgr.window.geometry(default_window_position[1]) h2.show()