#!/usr/bin/env python3 import os import argparse import numpy as np import matplotlib ################################################################################ args_parser = argparse.ArgumentParser() args_parser.add_argument('--save','-s', action='store_true', help='save to files') args_parser.add_argument('--raster','-r', action='store_true', help='save as raster') args_parser.add_argument('--debug','-d', action='store_true', help='hold for debugging') args_parser.add_argument('--polar','-p', action='store_true', help='do polar plotting (wide bandwidth)') args_parser.add_argument('--headless','-q', action='store_true', help='Remain neadless even if we aren\'t saving files.') args_parser.add_argument('-n', type=int, default=3, help='plot testing number') args = args_parser.parse_args() ################################################################################ if args.raster: args.save = True fig_ext = 'png' else: fig_ext = 'pdf' ################################################################################ HEADLESS = not 'DISPLAY' in os.environ.keys() if args.headless: HEADLESS = True # Override Manually if request if HEADLESS: matplotlib.use('Agg') from matplotlib import rcParams, pyplot as pp import skrf as rf from scipy.io import loadmat from collections import namedtuple import LPRDefaultPlotting import re import json ################################################################################ # Override the defaults for this script figScaleSize = 1.0 if args.save else 1.6 rcParams['figure.figsize'] = [3.4*figScaleSize,3*figScaleSize] default_window_position=['+20+80', '+120+80'] ################################################################################ SRC_DATA_NAMES = [\ 'Data_2018-05-15-clean', 'Data_2018-05-16-clean', 'Data_2018-05-21-clean', 'Data_2018-05-25-clean'] SRC_DATA_INDEX = args.n-1 SRC_DATA_NAME = SRC_DATA_NAMES[SRC_DATA_INDEX] #SRC_DATA_DATESTR = '-'.join(SRC_DATA_NAME.split('_')[1].split('-')[:-1]) SRC_DATA_LOC = '/media/ramdisk/' + SRC_DATA_NAME + '/'; SRC_DATA_SUMMARY = '/home/luke/Dropbox/Grad School/1801_PS/' \ '2018-05_Testing/results_plot/dat_clean/' + SRC_DATA_NAME + '_sum.json'; if args.polar: FILE_PAT = '%s-trunk2.s2p'; else: FILE_PAT = '%s-trunk.s2p'; figdir = 'figures-measured' class MeasurementConfig(namedtuple('config', ['r','c','inv','bias'])): __slots__ = () @property def fn_str(self): return "C%02d_R%1d_I%1d_B%0.4f" % (self.c, self.r, self.inv, self.bias) Measurement = namedtuple('measurement', ['cfg','gain','phase','f','s21', 'slope']) slopeBandwidthMax = 1 slopeBandwidthFreq = 28+np.array([-1,1])*0.5*slopeBandwidthMax def dB20(x): return 20*np.log10(np.abs(x)) def ang_deg(x): return 180/np.pi*np.angle(x) def ang(x): return np.angle(x) BDE=namedtuple('BufferDeEmbed',['mstr','PolyGain','PolyPhase','PhiFix','test']) BDE_list=[] # 2018-05-15 BDE_list.append(BDE( '2018-05-15', np.array([ 4.06488853e-03, -5.11527396e-01, 2.53053550e+01]), np.array([-1.62202706e-03, 6.94343608e-01, -1.80381551e+02]), -60, 'S02bB_C+02dB_M0' )) # 2018-05-16 BDE_list.append(BDE( '2018-05-16', np.array([ 4.08875413e-03, -5.13017311e-01, 2.54047949e+01]), np.array([-1.29541398e-03, 6.74431785e-01, -1.80127388e+02]), -60, 'S02bB_C+02dB_M0' )) # 2018-05-21 #PolyGain=np.array( [ 4.08875413e-03, -5.13017311e-01, 2.54047949e+01]) #PolyPhase=np.array([-1.29541398e-03, 6.74431785e-01, -1.80127388e+02]) BDE_list.append(BDE( '2018-05-21', np.array([ 4.08875413e-03, -5.13017311e-01, 2.54047949e+01]), np.array([-1.29541398e-03, 6.74431785e-01, -1.80127388e+02]), -60, 'S02bB_C+02dB_M0' )) # 2018-05-25 #PolyGain=np.array( [ 4.06488853e-03, -5.11527396e-01, 2.53053550e+01]) #PolyPhase=np.array([-1.62202706e-03, 6.94343608e-01, -1.80381551e+02]) BDE_list.append(BDE( '2018-05-25', np.array([ 4.06488853e-03, -5.11527396e-01, 2.53053550e+01]), np.array([-1.62202706e-03, 6.94343608e-01, -1.80381551e+02]), -70, 'S02bB_C+06dB_M0' )) source_directory='fromMat/%s_mat/' % SRC_DATA_NAME for BDEx in BDE_list: if re.search(BDEx.mstr, source_directory) != None: PolyGain=BDEx.PolyGain PolyPhase=BDEx.PolyPhase PhaseFixedRotationFactor=BDEx.PhiFix StopTestString=BDEx.test FamStr=BDEx.mstr break for filename in os.listdir(source_directory): filename=source_directory+filename group_filename_string = filename.split('/')[-1][:-4] src = loadmat(filename, struct_as_record=False) if not HEADLESS and group_filename_string != StopTestString: # skip until we hit some aribitrary targets continue collectedData=[] for sample in src['data'][0]: tmp = [sample.__getattribute__(key)[0,0] for key in ['r', 'c', 'inv', 'bias_dp_set']] pt = MeasurementConfig(r=tmp[0], c=tmp[1], inv=tmp[2], bias=np.float(tmp[3])) s2p_file = rf.Network(SRC_DATA_LOC + (FILE_PAT % pt.fn_str) ) freq = np.squeeze(s2p_file.f*1e-9) buffer_gain = np.polyval(PolyGain,freq) buffer_phase = np.polyval(PolyPhase,freq) buffer_phase = buffer_phase - np.mean(buffer_phase) + \ PhaseFixedRotationFactor*np.pi/180 buffer_sdat = np.power(10,buffer_gain/20)*np.exp(1j*buffer_phase) sdat = np.squeeze(s2p_file.s21.s)/buffer_sdat slope_valid_inds = np.where(np.all((freq >= slopeBandwidthFreq[0], freq <= slopeBandwidthFreq[1]),0)) sub_angles = np.unwrap(np.angle(sdat[slope_valid_inds]))*180/np.pi sub_freq = freq[slope_valid_inds]-np.mean(freq[slope_valid_inds]) slope = np.polyfit(sub_freq,sub_angles-np.mean(sub_angles),1)[0] index = np.squeeze(np.argwhere(freq==28)) collectedData.append(Measurement(pt, dB20(sdat[index]), ang_deg(sdat[index]), freq, sdat, slope)) # Find the indicies close to 0 and 180 as my reference curves phis = np.array([s.phase for s in collectedData]) best_slopes = np.argsort(np.abs(np.mod(phis+90,180)-90))[0:6] slope_list = np.array([s.slope for s in collectedData]) slope_avg = np.mean(slope_list[best_slopes]) h=pp.figure() if args.polar: ax=h.add_subplot(1,1,1, projection='polar') else: h2=pp.figure() ax=h.subplots(2,1) ax = np.append(ax, h2.subplots(1,1)) print("---------------------||------------------------------") print(" _C R I _Bias_ || Gain Phase ") print("---------------------||------------------------------") for imeas in collectedData: if args.polar: #ax.plot(ang(imeas.s21)-buffer_phase, dB20(imeas.s21)-buffer_gain) ax.plot(ang(imeas.s21), dB20(imeas.s21)) else: #ax[0].plot(imeas.f, dB20(imeas.s21)-buffer_gain) ax[0].plot(imeas.f, dB20(imeas.s21)) #unwrapped_phase = 180/np.pi*np.unwrap(ang(imeas.s21)-buffer_phase) #ax[1].plot(imeas.f, unwrapped_phase) unwrapped_phase = 180/np.pi*np.unwrap(ang(imeas.s21)) ax[1].plot(imeas.f, unwrapped_phase) slope_relative = (imeas.f-28)*slope_avg ax[2].plot(imeas.f, unwrapped_phase-slope_relative) print(" %2d %d %d %.4f || %+7.1f dB %+9.2f deg" % \ (imeas.cfg.c, imeas.cfg.r, imeas.cfg.inv, imeas.cfg.bias, \ imeas.gain, imeas.phase)) print("---------------------||------------------------------") if args.polar: ax.set_ylim(LPRDefaultPlotting.POLAR_YLIM_CONST) if args.polar: ax.set_title('Measured Performance') else: ax[0].set_title('Measured Performance') ax[0].set_ylabel('Gain (dB)'); ax[1].set_ylabel('Phase (deg)'); ax[2].set_ylabel('Phase (deg)'); ax[2].set_title('Relative Phase') for aT in ax: aT.set_xlabel('Frequency (GHz)') aT.grid() #aT.set_xlim((np.min(imeas.f), np.max(imeas.f))) aT.set_xlim((28-1.0, 28+1.0)) if args.polar: old_pos = ax.title.get_position() ax.title.set_position((old_pos[0], 1.1)) h.tight_layout() if not args.polar: h2.tight_layout() if args.save: if args.polar: h.savefig('%s/PolarGain-%s-%s.%s' % (figdir, FamStr, group_filename_string, fig_ext)) else: h.savefig('%s/StdPlots-%s-%s.%s' % (figdir, FamStr, group_filename_string, fig_ext)) h2.savefig('%s/RelStdPlots-%s-%s.%s' % (figdir, FamStr, group_filename_string, fig_ext)) if HEADLESS: if not args.polar: pp.close() pp.close() else: if not args.polar: h2.show() h.show() break