#!/usr/bin/env python3 import numpy as np import matplotlib import argparse import os import code import pdb import copy ################################################################################ args_parser = argparse.ArgumentParser() args_parser.add_argument('-n', type=int, default=1, help='plot testing number') args_parser.add_argument('--save','-s', action='store_true', help='save to files') args_parser.add_argument('--raster','-r', action='store_true', help='save as raster') args_parser.add_argument('--debug','-d', action='store_true', help='hold for debugging') args_parser.add_argument('--subplot', action='store_true', help='use subplots when available') args_parser.add_argument('--headless','-q', action='store_true', help='Remain neadless even if we aren\'t saving fileS1.') args = args_parser.parse_args() #exit() HEADLESS = not 'DISPLAY' in os.environ.keys() if args.headless: HEADLESS = True # Override Manually if request if HEADLESS: matplotlib.use('Agg') ################################################################################ from matplotlib import rcParams, pyplot as pp import LPRDefaultPlotting figdir = LPRDefaultPlotting.figures_directory if args.save: os.makedirs(figdir, exist_ok=True) import sys sys.path.append("./pySmithPlot") import smithplot from smithplot import SmithAxes SmithAxes.update_scParams(axes_normalize=False, grid_minor_fancy_threshold=50, axes_radius=0.5) plot_list = [args.n] if args.raster: args.save = True fig_ext = 'png' else: fig_ext = 'pdf' ################################################################################ # Override the defaults for this script figScaleSize = 1.0 if args.save else 1.6 rcParams['figure.figsize'] = [3.4*figScaleSize,2*figScaleSize] default_window_position=['+20+80', '+120+80'] ################################################################################ # Operating Enviornment (i.e. circuit parameters) import TankGlobals from FreqClass import FreqClass from tankComputers import * freq_pts = 501 S1=TankGlobals.ampSystem() S1.bw_plt=2 f=FreqClass(freq_pts, S1.f0, S1.bw_plt) S1.q1_L = 15 S2 = copy.deepcopy(S1) gain_variation = -2 # dB ################################################################################ # We want a smooth transition out to alpha. So For now assume a squares # weighting out to the maximum alpha at the edgeS1. # This gain variation function is the default function baked into the method. #gain_variation = 0 # dB S2.alpha_min = dB2Vlt(gain_variation) ################################################################################ # Extract the computed tank conductanec, and the transfer functionS1. (_, tf1) = S1.compute_block(f) (_, tf_ref1) = S1.compute_ref(f) (_, tf2) = S2.compute_block(f) (_, tf_ref2) = S2.compute_ref(f) # To produce full 360 dgree plots, double the two transfer functions by # considering inversion. # double to describe with perfect inversion stage tf1 = np.column_stack((tf1,-tf1)) tf2 = np.column_stack((tf2,-tf2)) # compute the relative transfer function thus giving us flat phase, and # flat (ideally) gain response if our system perfectly matches the reference tf_r1 = tf1 / (tf_ref1*np.ones((tf1.shape[1],1))).T tf_r2 = tf2 / (tf_ref2*np.ones((tf2.shape[1],1))).T # We will also do a direct angle comparison tf_r_ang_ideal1 = wrap_rads(np.concatenate((-S1.phase_swp, -np.pi - S1.phase_swp))) tf_r_ang_ideal2 = wrap_rads(np.concatenate((-S2.phase_swp, -np.pi - S2.phase_swp))) tf_r_ang1 = np.angle(tf_r1) tf_r_ang2 = np.angle(tf_r2) #tf_r_ang_rms1 = np.sqrt(np.mean(np.power(tf_r_ang1-tf_r_ang_ideal1,2),0)) #tf_r_ang_rms2 = np.sqrt(np.mean(np.power(tf_r_ang2-tf_r_ang_ideal2,2),0)) tf_r_ang_rms1_f=delta_rms(tf_r_ang1, 2*np.pi/16) tf_r_ang_rms2_f=delta_rms(tf_r_ang2, 2*np.pi/16) ################################################################################ # Compute RMS phase error relative to ideal reference across plotting bandwidth (bw_ang1, rms_ang_swp1)=rms_v_bw(tf_r_ang1-tf_r_ang_ideal1, S1.bw_plt) (bw_mag1, rms_gain_swp1)=rms_v_bw(tf_r1, S1.bw_plt) (bw_ang2, rms_ang_swp2)=rms_v_bw(tf_r_ang2-tf_r_ang_ideal2, S2.bw_plt) (bw_mag2, rms_gain_swp2)=rms_v_bw(tf_r2, S2.bw_plt) ################################################################################ ################################################################################ ################################################################################ #mgr = pp.get_current_fig_manager() ################################################################################ if 3 in plot_list: h3 = [pp.figure() for x in range(2)] ax3a = h3[0].subplots(1,2) ax3b = h3[1].subplots(1,2) ax3 = np.concatenate((ax3a, ax3b)) ax3[0].plot(bw_mag1,dB20(rms_gain_swp1)) ax3[1].plot(bw_mag2,dB20(rms_gain_swp2)) ax3[2].plot(bw_ang1,rms_ang_swp1*180/np.pi) ax3[3].plot(bw_ang2,rms_ang_swp2*180/np.pi) h3[0].suptitle('RMS Gain Error') h3[1].suptitle('RMS Phase Error') #ax3[0].set_title('RMS Gain Error') ax3[0].set_ylabel('Gain Error (dB)') #ax3[2].set_title('RMS Phase Error') ax3[2].set_ylabel('Phase Error (deg)') #ax3[1].set_title('RMS Gain Error w/GV') ax3[1].set_ylabel('Gain Error (dB)') #ax3[3].set_title('RMS Phase Error w/GV') ax3[3].set_ylabel('Phase Error (deg)') # Match Axes limSetGain = [axT.get_ylim() for axT in ax3[:2]] limSetPhase = [axT.get_ylim() for axT in ax3[2:]] limSetGain = (np.min(limSetGain), np.max(limSetGain)) limSetPhase = (np.min(limSetPhase), np.max(limSetPhase)) for axT in ax3[:2]: axT.set_ylim(limSetGain) for axT in ax3[2:]: axT.set_ylim(limSetPhase) for axT in ax3[[1,3]]: LPRDefaultPlotting.axAnnotateCorner(axT, '%g dB gain variation' % (gain_variation), corner=2, ratio=0.04) axT.yaxis.tick_right() axT.yaxis.label_position='right' axT.yaxis.labelpad = axT.yaxis.labelpad + axT.yaxis.label.get_size() for axT in ax3[[0,2]]: LPRDefaultPlotting.axAnnotateCorner(axT, '%g dB gain variation' % (0), corner=2, ratio=0.04) for axT in ax3: axT.grid() axT.set_xlim((0,S1.bw_plt)) axT.set_xlabel('Bandwidth (GHz)') [hT.tight_layout() for hT in h3] [hT.tight_layout() for hT in h3] # Make XY mirror positions for i in [0,2]: p0 = ax3[i].get_position() p1 = ax3[i+1].get_position() p1.x1 = 1 - p0.x0 p1.x0 = 1 - p0.x1 ax3[i+1].set_position(p1) for axT in ax3: p=axT.get_position() p.y1=0.88 axT.set_position(p) if args.save: h3[0].savefig('%s/%s.%s' % (figdir, 'dual_030-RMSGain', fig_ext)) h3[1].savefig('%s/%s.%s' % (figdir, 'dual_031-RMSPhase', fig_ext)) if HEADLESS: pp.close() else: #mgr.window.geometry(default_window_position[0]) [hT.show() for hT in h3] if 4 in plot_list: h4 = [pp.figure() for x in range(2)] ax4a = h4[0].subplots(1,2) ax4b = h4[1].subplots(1,2) ax4 = np.concatenate((ax4a, ax4b)) #ax4[0].plot(bw_mag1,dB20(rms_gain_swp1)) #ax4[1].plot(bw_mag2,dB20(rms_gain_swp2)) ax4[2].plot(f.hz,tf_r_ang_rms1_f*180/np.pi) ax4[3].plot(f.hz,tf_r_ang_rms2_f*180/np.pi) h4[0].suptitle('RMS Gain Error') h4[1].suptitle('RMS Phase Error') #ax4[0].set_title('RMS Gain Error') ax4[0].set_ylabel('Gain Error (dB)') #ax4[2].set_title('RMS Phase Error') ax4[2].set_ylabel('Phase Error (deg)') #ax4[1].set_title('RMS Gain Error w/GV') ax4[1].set_ylabel('Gain Error (dB)') #ax4[3].set_title('RMS Phase Error w/GV') ax4[3].set_ylabel('Phase Error (deg)') # Match Axes limSetGain = [axT.get_ylim() for axT in ax4[:2]] limSetPhase = [axT.get_ylim() for axT in ax4[2:]] limSetGain = (np.min(limSetGain), np.max(limSetGain)) limSetPhase = (np.min(limSetPhase), np.max(limSetPhase)) for axT in ax4[:2]: axT.set_ylim(limSetGain) for axT in ax4[2:]: axT.set_ylim(limSetPhase) for axT in ax4[[1,3]]: LPRDefaultPlotting.axAnnotateCorner(axT, '%g dB gain variation' % (gain_variation), corner=2, ratio=0.04) axT.yaxis.tick_right() axT.yaxis.label_position='right' axT.yaxis.labelpad = axT.yaxis.labelpad + axT.yaxis.label.get_size() for axT in ax4[[0,2]]: LPRDefaultPlotting.axAnnotateCorner(axT, '%g dB gain variation' % (0), corner=2, ratio=0.04) for axT in ax4: axT.grid() axT.set_xlim((np.min(f.hz),np.max(f.hz))) axT.set_xlabel('Frequency (GHz)') [hT.tight_layout() for hT in h4] [hT.tight_layout() for hT in h4] # Make XY mirror positions for i in [0,2]: p0 = ax4[i].get_position() p1 = ax4[i+1].get_position() p1.x1 = 1 - p0.x0 p1.x0 = 1 - p0.x1 ax4[i+1].set_position(p1) for axT in ax4: p=axT.get_position() p.y1=0.88 axT.set_position(p) if args.save: h4[0].savefig('%s/%s.%s' % (figdir, 'dual_040-RMSGain', fig_ext)) h4[1].savefig('%s/%s.%s' % (figdir, 'dual_041-RMSPhase', fig_ext)) if HEADLESS: pp.close() else: #mgr.window.geometry(default_window_position[0]) [hT.show() for hT in h4]