#!/usr/bin/env python3 import numpy as np from matplotlib import rcParams, pyplot as pp import LPRDefaultPlotting import sys sys.path.append("./pySmithPlot") import smithplot from smithplot import SmithAxes ################################################################################ # Override the defaults for this script rcParams['figure.figsize'] = [10,7] default_window_position=['+20+80', '+120+80'] ################################################################################ # Operating Enviornment (i.e. circuit parameters) import TankGlobals from FreqClass import FreqClass from tankComputers import * S=TankGlobals.ampSystem() f=FreqClass(501, S.f0, S.bw_plt) ################################################################################ # We want a smooth transition out to alpha. So For now assume a squares # weighting out to the maximum alpha at the edges. gain_variation = -8*0 # dB S.alpha_min = dB2Vlt(gain_variation) # compute correction factor for g1 that will produce common gain at f0 # this is defined as the class default g1_swp = S.g1_swp # and compute how much of a negative gm this requres, and it's relative # proportion to the gm of the assumed main amplifier gm. g1_boost = (g1_swp - S.g1) g1_ratio = -g1_boost / S.gm1 print(' Max G1 boost %.2fmS (%.1f%% of gm1)' % \ (1e3*np.max(np.abs(g1_boost)), 100*np.max(g1_ratio))) ################################################################################ # Generate a reference implementation (y_tank, tf) = S.compute_block(f) (_, tf_ref) = S.compute_ref(f) # double to describe with perfect inversion stage tf = np.column_stack((tf,-tf)) # compute the relative transfer function thus giving us flat phase, and # flat (ideally) gain response if our system perfectly matches the reference tf_r = tf / (tf_ref*np.ones((tf.shape[1],1))).T # We will also do a direct angle comparison tf_r_ang_ideal = wrap_rads(np.concatenate((-S.phase_swp, -np.pi - S.phase_swp))) tf_r_ang = np.angle(tf_r) tf_r_ang_rms = np.sqrt(np.mean(np.power(tf_r_ang-tf_r_ang_ideal,2),0)) y_tank = y_tank.T ################################################################################ # Compute RMS phase error relative to ideal reference across plotting bandwidth (bw_ang, rms_ang_swp)=rms_v_bw(tf_r_ang-tf_r_ang_ideal, S.bw_plt) (bw_mag, rms_gain_swp)=rms_v_bw(tf_r, S.bw_plt) ################################################################################ h1 = pp.figure() h2 = pp.figure(figsize=(5,7)) h3 = pp.figure(figsize=(5,7)) mgr = pp.get_current_fig_manager() ################################################################################ ax1 = h1.add_subplot(2,2,1, projection='smith') ax2 = h1.add_subplot(2,2,3, projection='polar') ax3 = h1.add_subplot(2,2,2) ax4 = h1.add_subplot(2,2,4) ax1.plot(y_tank, datatype=SmithAxes.Y_PARAMETER, marker="None") ax2.plot(np.angle(tf), dB20(tf)) ax3.plot(f.hz,dB20(tf)) ax4.plot(f.hz,ang_unwrap(tf)) ################################################################################ ax6 = h2.add_subplot(2,1,1) ax7 = h2.add_subplot(2,1,2) ax6.plot(f.hz,dB20(tf_r)) ax7.plot(f.hz,ang_unwrap(tf_r.T).T) ax8 = h3.add_subplot(2,1,1) ax9 = h3.add_subplot(2,1,2) ax8.plot(bw_mag,dB20(rms_gain_swp)) ax9.plot(bw_ang,rms_ang_swp*180/np.pi) ax1.set_title('Tank Impedance') ax2.set_title('Transfer Function') ax3.set_title('TF Gain') ax3.set_ylabel('Gain (dB)') ax4.set_title('TF Phase') ax4.set_ylabel('Phase (deg)') ax6.set_title('TF Relative Gain') ax6.set_ylabel('Relative Gain (dB)') ax7.set_title('TF Relative Phase') ax7.set_ylabel('Relative Phase (deg)') for ax_T in [ax3, ax4, ax6, ax7]: ax_T.grid() ax_T.set_xlabel('Freq (GHz)') ax_T.set_xlim(f.hz_range) ax8.set_title('RMS Gain Error') ax8.set_ylabel('RMS Gain Error (dB)') ax9.set_title('RMS Phase Error') ax9.set_ylabel('RMS Phase Error (deg)') for ax_T in [ax8, ax9]: ax_T.grid() ax_T.set_xlim((0,S.bw_plt)) ax_T.set_xlabel('Bandwidth (GHz)') ################################################################################ h1.tight_layout() h2.tight_layout() h3.tight_layout() mgr.window.geometry(default_window_position[0]) h1.show() mgr.window.geometry(default_window_position[1]) h2.show() h3.show()