#!/usr/bin/env python3 import numpy as np ################################################################################ # Operating Enviornment ##### f0 = 28 bw0 = 6.5 # assumed tuning range (GHz) bw_plt = 3 # Plotting range (GHz) fbw = bw0/f0 # fractional bandwidth frequency_sweep_steps = 101 gamma_sweep_steps = 16 gamma = 1 - np.power(f0 / (f0 + bw0/2),2) gamma_limit_ratio = 0.99 # how close gamma can get to theoretical extreme # Configuration Of Hardware ##### q1_L = 10 q1_C = 10 l1 = 100e-3 # nH gm1 = 25e-3 # S # Compute frequency sweep ##### w0 = f0*2*np.pi fbw_plt = bw_plt/f0 delta = np.linspace(-fbw_plt/2,fbw_plt/2,frequency_sweep_steps) w = w0*(1+delta) f = f0*(1+delta) jw = 1j*w ################## # Compute system ##### c1 = 1/(w0*w0*l1) g1_L = 1 / (q1_L*w0*l1) g1_C = w0 * c1 / q1_C g1 = g1_L + g1_C # Verify gamma is valid ##### gamma_max = g1 * np.sqrt(l1/c1) if gamma > (gamma_limit_ratio * gamma_max): print("==> WARN: Gamma to large, reset to %.3f (was %.3f) <==" % \ (gamma_max_cap*gamma_max, gamma)) gamma = gamma_max_cap*gamma_max