Mark stable point of tank plotting with hard gain limit
This commit is contained in:
		
							parent
							
								
									17d08cfaed
								
							
						
					
					
						commit
						d6d75b804f
					
				
					 3 changed files with 179 additions and 14 deletions
				
			
		| 
						 | 
				
			
			@ -5,21 +5,22 @@ import numpy as np
 | 
			
		|||
# Operating Enviornment
 | 
			
		||||
#####
 | 
			
		||||
f0		= 28
 | 
			
		||||
bw0		= 6.5 # assumed tuning range (GHz)
 | 
			
		||||
bw_plt	= 3 # Plotting range (GHz)
 | 
			
		||||
bw0		= 8 # assumed tuning range (GHz)
 | 
			
		||||
bw_plt	= 4 # Plotting range (GHz)
 | 
			
		||||
fbw		= bw0/f0 # fractional bandwidth
 | 
			
		||||
 | 
			
		||||
frequency_sweep_steps = 101
 | 
			
		||||
gamma_sweep_steps = 16
 | 
			
		||||
gamma_sweep_steps = 8
 | 
			
		||||
 | 
			
		||||
gamma = 1 - np.power(f0 / (f0 + bw0/2),2)
 | 
			
		||||
gamma_limit_ratio = 0.99 # how close gamma can get to theoretical extreme
 | 
			
		||||
phase_limit_requested = (1-1/gamma_sweep_steps)*np.pi/2
 | 
			
		||||
 | 
			
		||||
# Configuration Of Hardware
 | 
			
		||||
#####
 | 
			
		||||
q1_L	= 10
 | 
			
		||||
q1_C	= 10
 | 
			
		||||
l1		= 100e-3 # nH
 | 
			
		||||
q1_L	= 20
 | 
			
		||||
q1_C	= 7
 | 
			
		||||
l1		= 180e-3 # nH
 | 
			
		||||
gm1		= 25e-3 # S
 | 
			
		||||
 | 
			
		||||
# Compute frequency sweep
 | 
			
		||||
| 
						 | 
				
			
			@ -44,6 +45,6 @@ g1		= g1_L + g1_C
 | 
			
		|||
gamma_max = g1 * np.sqrt(l1/c1)
 | 
			
		||||
if gamma > (gamma_limit_ratio * gamma_max):
 | 
			
		||||
	print("==> WARN: Gamma to large, reset to %.3f (was %.3f) <==" % \
 | 
			
		||||
		(gamma_max_cap*gamma_max, gamma))
 | 
			
		||||
	gamma = gamma_max_cap*gamma_max
 | 
			
		||||
		(gamma_limit_ratio * gamma_max, gamma))
 | 
			
		||||
	gamma = gamma_limit_ratio * gamma_max
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										26
									
								
								tankPlot.py
									
										
									
									
									
								
							
							
						
						
									
										26
									
								
								tankPlot.py
									
										
									
									
									
								
							| 
						 | 
				
			
			@ -32,7 +32,7 @@ def atan(x):
 | 
			
		|||
################################################################################
 | 
			
		||||
# Override the defaults for this script
 | 
			
		||||
rcParams['figure.figsize'] = [10,7]
 | 
			
		||||
default_window_position='+20+80'
 | 
			
		||||
default_window_position=['+20+80', '+120+80']
 | 
			
		||||
 | 
			
		||||
################################################################################
 | 
			
		||||
# Operating Enviornment (i.e. circuit parameters)
 | 
			
		||||
| 
						 | 
				
			
			@ -50,6 +50,15 @@ g1_limit = np.sqrt( g1*g1 - (gamma*gamma) * c1/l1  )
 | 
			
		|||
K_limit = np.sqrt(c1/l1)*1/g1_limit
 | 
			
		||||
phase_limit = np.mod(np.pi/2 - np.arctan( -1/K_limit * 1/gamma ),np.pi) - np.pi
 | 
			
		||||
 | 
			
		||||
if abs(phase_limit) < phase_limit_requested:
 | 
			
		||||
	print("==> WARN: Phase Beyond bounds, leaving at limits. <==")
 | 
			
		||||
	print("==> %.3f requested, but hardware limit is %.3f <==" % \
 | 
			
		||||
		(180/np.pi*phase_limit_requested, 180/np.pi*abs(phase_limit)))
 | 
			
		||||
	sys.exit(-1)
 | 
			
		||||
else:
 | 
			
		||||
	phase_limit = phase_limit_requested
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# This gives us our equal phase spacing points
 | 
			
		||||
phase_swp = np.linspace(-1,1,gamma_sweep_steps) * phase_limit
 | 
			
		||||
# Then use this to compute the gamma steps to produce arbitrary phase given
 | 
			
		||||
| 
						 | 
				
			
			@ -85,9 +94,14 @@ for itune,gamma_tune in enumerate(gamma_swp):
 | 
			
		|||
	tf[itune,:] = tf_tmp
 | 
			
		||||
 | 
			
		||||
tf = tf.T
 | 
			
		||||
tf_d = tf[:,1:]-tf[:,:-1]
 | 
			
		||||
tf_r = tf / (tf[:,int(tf.shape[1]/2)]*np.ones((tf.shape[1],1))).T
 | 
			
		||||
# double to describe with perfect inversion stage
 | 
			
		||||
tf = np.column_stack((tf,-tf))
 | 
			
		||||
 | 
			
		||||
ref_index = int(gamma_swp.shape[0]/2)
 | 
			
		||||
tf_r = tf / (tf[:,ref_index]*np.ones((tf.shape[1],1))).T
 | 
			
		||||
y_tank = y_tank.T
 | 
			
		||||
 | 
			
		||||
print(ang(tf[f==28,:]))
 | 
			
		||||
################################################################################
 | 
			
		||||
 | 
			
		||||
h1 = pp.figure()
 | 
			
		||||
| 
						 | 
				
			
			@ -102,7 +116,7 @@ ax4 = h1.add_subplot(2,2,4)
 | 
			
		|||
ax1.plot(y_tank, datatype=SmithAxes.Y_PARAMETER, marker="None")
 | 
			
		||||
ax2.plot(np.angle(tf), dB20(tf))
 | 
			
		||||
ax3.plot(f,dB20(tf))
 | 
			
		||||
ax4.plot(f,ang(tf))
 | 
			
		||||
ax4.plot(f,ang_unwrap(tf))
 | 
			
		||||
 | 
			
		||||
################################################################################
 | 
			
		||||
ax8 = h2.add_subplot(2,1,1)
 | 
			
		||||
| 
						 | 
				
			
			@ -130,7 +144,7 @@ for ax_T in [ax3, ax4, ax8, ax9]:
 | 
			
		|||
################################################################################
 | 
			
		||||
h1.tight_layout()
 | 
			
		||||
h2.tight_layout()
 | 
			
		||||
mgr.window.geometry(default_window_position)
 | 
			
		||||
mgr.window.geometry(default_window_position[0])
 | 
			
		||||
h1.show()
 | 
			
		||||
mgr.window.geometry(default_window_position)
 | 
			
		||||
mgr.window.geometry(default_window_position[1])
 | 
			
		||||
h2.show()
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										150
									
								
								tankPlot_v1.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										150
									
								
								tankPlot_v1.py
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,150 @@
 | 
			
		|||
#!/usr/bin/env python3
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
from matplotlib import rcParams, pyplot as pp
 | 
			
		||||
import LPRDefaultPlotting
 | 
			
		||||
 | 
			
		||||
import sys
 | 
			
		||||
sys.path.append("./pySmithPlot")
 | 
			
		||||
import smithplot
 | 
			
		||||
from smithplot import SmithAxes
 | 
			
		||||
 | 
			
		||||
################################################################################
 | 
			
		||||
# Define my helper functions.
 | 
			
		||||
def dB20(volt_tf):
 | 
			
		||||
	"""Describe signal gain of a transfer function in dB (i.e. 20log(x))"""
 | 
			
		||||
	return 20*np.log10(np.abs(volt_tf))
 | 
			
		||||
def ang(volt_tf):
 | 
			
		||||
	"""Describe phase of a transfer function in degrees. Not unwrapped."""
 | 
			
		||||
	return 180/np.pi*np.angle(volt_tf)
 | 
			
		||||
def ang_unwrap(volt_tf):
 | 
			
		||||
	"""Describe phase of a transfer function in degrees. With unwrapping."""
 | 
			
		||||
	return 180/np.pi*np.unwrap(np.angle(volt_tf))
 | 
			
		||||
def dB10(pwr_tf):
 | 
			
		||||
	"""Describe power gain of a transfer function in dB (i.e. 10log(x))"""
 | 
			
		||||
	return 10*np.log10(np.abs(pwr_tf))
 | 
			
		||||
	
 | 
			
		||||
def atan(x):
 | 
			
		||||
	return 180/np.pi*np.arctan(x)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
################################################################################
 | 
			
		||||
# Override the defaults for this script
 | 
			
		||||
rcParams['figure.figsize'] = [10,7]
 | 
			
		||||
default_window_position=['+20+80', '+120+80']
 | 
			
		||||
 | 
			
		||||
################################################################################
 | 
			
		||||
# Operating Enviornment (i.e. circuit parameters)
 | 
			
		||||
from TankGlobals import *
 | 
			
		||||
 | 
			
		||||
################################################################################
 | 
			
		||||
# Now generate the sweep of resonance tuning (gamma, and capacitance)
 | 
			
		||||
 | 
			
		||||
# Linear based gamma spacing
 | 
			
		||||
#gamma_swp = np.linspace(-gamma,gamma,gamma_sweep_steps)
 | 
			
		||||
 | 
			
		||||
# Linear PHASE gamma spacing
 | 
			
		||||
# First compute the most extreme phase given the extreme gamma
 | 
			
		||||
g1_limit = np.sqrt( g1*g1 - (gamma*gamma) * c1/l1  )
 | 
			
		||||
K_limit = np.sqrt(c1/l1)*1/g1_limit
 | 
			
		||||
phase_limit = np.mod(np.pi/2 - np.arctan( -1/K_limit * 1/gamma ),np.pi) - np.pi
 | 
			
		||||
 | 
			
		||||
if abs(phase_limit) < phase_limit_requested:
 | 
			
		||||
	print("==> WARN: Phase Beyond bounds, leaving at limits. <==")
 | 
			
		||||
	print("==> %.3f requested, but hardware limit is %.3f <==" % \
 | 
			
		||||
		(180/np.pi*phase_limit_requested, 180/np.pi*abs(phase_limit)))
 | 
			
		||||
	sys.exit(-1)
 | 
			
		||||
else:
 | 
			
		||||
	phase_limit = phase_limit_requested
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# This gives us our equal phase spacing points
 | 
			
		||||
phase_swp = np.linspace(-1,1,gamma_sweep_steps) * phase_limit
 | 
			
		||||
# Then use this to compute the gamma steps to produce arbitrary phase given
 | 
			
		||||
# our perfect gain constraint.
 | 
			
		||||
gamma_swp = np.sign(phase_swp)/np.sqrt(np.power(np.tan(np.pi/2 - phase_swp),2)+1) * g1 / np.sqrt(c1/l1)
 | 
			
		||||
 | 
			
		||||
# compute correction factor for g1 that will produce common gain at f0
 | 
			
		||||
g1_swp = np.sqrt( g1*g1 - (gamma_swp*gamma_swp) * c1/l1  )
 | 
			
		||||
# and compute how much of a negative gm this requres, and it's relative
 | 
			
		||||
# proportion to the gm of the assumed main amplifier gm.
 | 
			
		||||
g1_boost = (g1_swp - g1)
 | 
			
		||||
g1_ratio = -g1_boost / gm1
 | 
			
		||||
 | 
			
		||||
c1_swp = c1 * (1 + gamma_swp)
 | 
			
		||||
 | 
			
		||||
## Report System Descrption
 | 
			
		||||
print('  L1 = %.3fpH, C1 = %.3ffF' % (1e3*l1, 1e6*c1))
 | 
			
		||||
print('    Rp = %.3f Ohm' % (1/g1))
 | 
			
		||||
print('    Max G1 boost %.2fmS (%.1f%% of gm1)' % \
 | 
			
		||||
	(1e3*np.max(np.abs(g1_boost)), 100*np.max(g1_ratio)))
 | 
			
		||||
 | 
			
		||||
y_tank = np.zeros((len(gamma_swp),len(f)), dtype=complex)
 | 
			
		||||
tf = np.zeros((len(gamma_swp),len(f)), dtype=complex)
 | 
			
		||||
for itune,gamma_tune in enumerate(gamma_swp):
 | 
			
		||||
	c1_tune = c1_swp[itune]
 | 
			
		||||
	g1_tune = g1_swp[itune]
 | 
			
		||||
	K = np.sqrt(c1/l1)/g1_tune
 | 
			
		||||
	y_tank_tmp = g1_tune + jw*c1_tune + 1/(jw * l1)
 | 
			
		||||
	y_tank[itune,:] = y_tank_tmp
 | 
			
		||||
	tf_tmp = gm1 / g1_tune * \
 | 
			
		||||
		1j*(1+delta) / \
 | 
			
		||||
		( 1j*(1+delta) + K*(1 - (1+gamma_tune)*np.power(1+delta,2)) )
 | 
			
		||||
	tf[itune,:] = tf_tmp
 | 
			
		||||
 | 
			
		||||
tf = tf.T
 | 
			
		||||
# double to describe with perfect inversion stage
 | 
			
		||||
tf = np.column_stack((tf,-tf))
 | 
			
		||||
 | 
			
		||||
ref_index = int(gamma_swp.shape[0]/2)
 | 
			
		||||
tf_r = tf / (tf[:,ref_index]*np.ones((tf.shape[1],1))).T
 | 
			
		||||
y_tank = y_tank.T
 | 
			
		||||
 | 
			
		||||
print(ang(tf[f==28,:]))
 | 
			
		||||
################################################################################
 | 
			
		||||
 | 
			
		||||
h1 = pp.figure()
 | 
			
		||||
h2 = pp.figure(figsize=(5,7))
 | 
			
		||||
mgr = pp.get_current_fig_manager()
 | 
			
		||||
################################################################################
 | 
			
		||||
ax1 = h1.add_subplot(2,2,1, projection='smith')
 | 
			
		||||
ax2 = h1.add_subplot(2,2,3, projection='polar')
 | 
			
		||||
ax3 = h1.add_subplot(2,2,2)
 | 
			
		||||
ax4 = h1.add_subplot(2,2,4)
 | 
			
		||||
 | 
			
		||||
ax1.plot(y_tank, datatype=SmithAxes.Y_PARAMETER, marker="None")
 | 
			
		||||
ax2.plot(np.angle(tf), dB20(tf))
 | 
			
		||||
ax3.plot(f,dB20(tf))
 | 
			
		||||
ax4.plot(f,ang_unwrap(tf))
 | 
			
		||||
 | 
			
		||||
################################################################################
 | 
			
		||||
ax8 = h2.add_subplot(2,1,1)
 | 
			
		||||
ax9 = h2.add_subplot(2,1,2)
 | 
			
		||||
ax8.plot(f,dB20(tf_r))
 | 
			
		||||
ax9.plot(f,ang_unwrap(tf_r.T).T)
 | 
			
		||||
 | 
			
		||||
ax1.set_title('Tank Impedance')
 | 
			
		||||
ax2.set_title('Transfer Function')
 | 
			
		||||
 | 
			
		||||
ax3.set_title('TF Gain')
 | 
			
		||||
ax3.set_ylabel('Gain (dB)')
 | 
			
		||||
ax4.set_title('TF Phase')
 | 
			
		||||
ax4.set_ylabel('Phase (deg)')
 | 
			
		||||
ax8.set_title('TF Relative Gain')
 | 
			
		||||
ax8.set_ylabel('Relative Gain (dB)')
 | 
			
		||||
ax9.set_title('TF Relative Phase')
 | 
			
		||||
ax9.set_ylabel('Relative Phase (deg)')
 | 
			
		||||
for ax_T in [ax3, ax4, ax8, ax9]:
 | 
			
		||||
	ax_T.grid()
 | 
			
		||||
	ax_T.set_xlabel('Freq (GHz)')
 | 
			
		||||
	ax_T.set_xlim(( np.min(f), np.max(f) ))
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
################################################################################
 | 
			
		||||
h1.tight_layout()
 | 
			
		||||
h2.tight_layout()
 | 
			
		||||
mgr.window.geometry(default_window_position[0])
 | 
			
		||||
h1.show()
 | 
			
		||||
mgr.window.geometry(default_window_position[1])
 | 
			
		||||
h2.show()
 | 
			
		||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue