diff --git a/tankPlot.py b/tankPlot.py index fe6aa98..45d2fe6 100644 --- a/tankPlot.py +++ b/tankPlot.py @@ -15,11 +15,11 @@ from smithplot import SmithAxes ##### f0 = 28 bw0 = 6.5 # assumed tuning range (GHz) -bw_plt = 0.5 # Plotting range (GHz) +bw_plt = 1 # Plotting range (GHz) fbw = bw0/f0 # fractional bandwidth frequency_sweep_steps = 101 -gamma_sweep_steps = 11 +gamma_sweep_steps = 15 gamma = 1 - np.power(f0 / (f0 + bw0/2),2) gamma_limit_ratio = 0.99 # how close gamma can get to theoretical extreme @@ -80,7 +80,8 @@ def ang(volt_tf): #y_tank=np.zeros((len(delta),len(gamma_swp))) h = pp.figure() mgr = pp.get_current_fig_manager() -ax1 = h.add_subplot(2,2,(1,3), projection='smith') +ax1 = h.add_subplot(2,2,1, projection='smith') +ax2 = h.add_subplot(2,2,3, projection='polar') ax3 = h.add_subplot(2,2,2) ax4 = h.add_subplot(2,2,4) for itune,gamma_tune in enumerate(gamma_swp): @@ -93,11 +94,13 @@ for itune,gamma_tune in enumerate(gamma_swp): tf = gm1 / g1_tune * \ 1j*(1+delta) / \ ( 1j*(1+delta) + K*(1 - (1+gamma_tune)*np.power(1+delta,2)) ) + ax2.plot(np.angle(tf), db(tf)) ax3.plot(f,db(tf)) ax4.plot(f,ang(tf)) ################################################################################ ax1.set_title('Tank Impedance') +ax2.set_title('Transfer Function') ax3.set_title('TF Gain') ax3.set_ylabel('Gain (dB)')