Added RMS error plotting to measured results. Theoretical is still a WiP.
This commit is contained in:
parent
852f4cad1d
commit
54f1c18e07
5 changed files with 235 additions and 42 deletions
|
@ -13,6 +13,7 @@ from matplotlib import rcParams, pyplot as pp
|
|||
from cycler import cycler
|
||||
|
||||
POLAR_YLIM_CONST=(-18,-6)
|
||||
POLAR_YLIM_CONST_MEAS=(-22,-10)
|
||||
POLAR_YLIM_CONST_ALT=(-32,-6)
|
||||
|
||||
fcFontList = FM.get_fontconfig_fonts()
|
||||
|
@ -54,6 +55,7 @@ rcParams['mathtext.bf'] = 'serif:bold'
|
|||
rcParams['mathtext.sf'] = 'serif'
|
||||
rcParams['mathtext.tt'] = 'monospace'
|
||||
rcParams['lines.linewidth'] = 1.0
|
||||
#rcParams['axes.grid'] = True
|
||||
|
||||
# axes.prop_cycle
|
||||
COLOR_CYCLE_LIST = [
|
||||
|
|
|
@ -66,12 +66,12 @@ from tankComputers import *
|
|||
freq_pts = 501
|
||||
|
||||
S1=TankGlobals.ampSystem()
|
||||
B=TankGlobals.bufferSystem()
|
||||
S1.bw_plt=2
|
||||
f=FreqClass(freq_pts, S1.f0, S1.bw_plt)
|
||||
|
||||
S1.q1_L = 15
|
||||
S2 = copy.deepcopy(S1)
|
||||
gain_variation = +4 # dB
|
||||
gain_variation = +5 # dB
|
||||
|
||||
|
||||
|
||||
|
@ -105,8 +105,11 @@ tf_r_ang_ideal1 = wrap_rads(np.concatenate((-S1.phase_swp, -np.pi - S1.phase_swp
|
|||
tf_r_ang_ideal2 = wrap_rads(np.concatenate((-S2.phase_swp, -np.pi - S2.phase_swp)))
|
||||
tf_r_ang1 = np.angle(tf_r1)
|
||||
tf_r_ang2 = np.angle(tf_r2)
|
||||
tf_r_ang_rms1 = np.sqrt(np.mean(np.power(tf_r_ang1-tf_r_ang_ideal1,2),0))
|
||||
tf_r_ang_rms2 = np.sqrt(np.mean(np.power(tf_r_ang2-tf_r_ang_ideal2,2),0))
|
||||
#tf_r_ang_rms1 = np.sqrt(np.mean(np.power(tf_r_ang1-tf_r_ang_ideal1,2),0))
|
||||
#tf_r_ang_rms2 = np.sqrt(np.mean(np.power(tf_r_ang2-tf_r_ang_ideal2,2),0))
|
||||
|
||||
tf_r_ang_rms1_f=delta_rms(tf_r_ang1, 2*np.pi/16)
|
||||
tf_r_ang_rms2_f=delta_rms(tf_r_ang2, 2*np.pi/16)
|
||||
|
||||
################################################################################
|
||||
# Compute RMS phase error relative to ideal reference across plotting bandwidth
|
||||
|
@ -115,15 +118,13 @@ tf_r_ang_rms2 = np.sqrt(np.mean(np.power(tf_r_ang2-tf_r_ang_ideal2,2),0))
|
|||
(bw_ang2, rms_ang_swp2)=rms_v_bw(tf_r_ang2-tf_r_ang_ideal2, S2.bw_plt)
|
||||
(bw_mag2, rms_gain_swp2)=rms_v_bw(tf_r2, S2.bw_plt)
|
||||
|
||||
(y_buf, tf_buf) = B.compute_ref(f)
|
||||
|
||||
################################################################################
|
||||
################################################################################
|
||||
################################################################################
|
||||
#mgr = pp.get_current_fig_manager()
|
||||
|
||||
################################################################################
|
||||
if 3 in plot_list or 13 in plot_list:
|
||||
if 3 in plot_list:
|
||||
h3 = [pp.figure() for x in range(2)]
|
||||
ax3a = h3[0].subplots(1,2)
|
||||
ax3b = h3[1].subplots(1,2)
|
||||
|
@ -195,3 +196,76 @@ if 3 in plot_list or 13 in plot_list:
|
|||
else:
|
||||
#mgr.window.geometry(default_window_position[0])
|
||||
[hT.show() for hT in h3]
|
||||
|
||||
if 4 in plot_list:
|
||||
h4 = [pp.figure() for x in range(2)]
|
||||
ax4a = h4[0].subplots(1,2)
|
||||
ax4b = h4[1].subplots(1,2)
|
||||
ax4 = np.concatenate((ax4a, ax4b))
|
||||
|
||||
#ax4[0].plot(bw_mag1,dB20(rms_gain_swp1))
|
||||
#ax4[1].plot(bw_mag2,dB20(rms_gain_swp2))
|
||||
ax4[2].plot(f.hz,tf_r_ang_rms1_f*180/np.pi)
|
||||
ax4[3].plot(f.hz,tf_r_ang_rms2_f*180/np.pi)
|
||||
|
||||
h4[0].suptitle('RMS Gain Error')
|
||||
h4[1].suptitle('RMS Phase Error')
|
||||
#ax4[0].set_title('RMS Gain Error')
|
||||
ax4[0].set_ylabel('Gain Error (dB)')
|
||||
#ax4[2].set_title('RMS Phase Error')
|
||||
ax4[2].set_ylabel('Phase Error (deg)')
|
||||
|
||||
#ax4[1].set_title('RMS Gain Error w/GV')
|
||||
ax4[1].set_ylabel('Gain Error (dB)')
|
||||
#ax4[3].set_title('RMS Phase Error w/GV')
|
||||
ax4[3].set_ylabel('Phase Error (deg)')
|
||||
|
||||
# Match Axes
|
||||
limSetGain = [axT.get_ylim() for axT in ax4[:2]]
|
||||
limSetPhase = [axT.get_ylim() for axT in ax4[2:]]
|
||||
limSetGain = (np.min(limSetGain), np.max(limSetGain))
|
||||
limSetPhase = (np.min(limSetPhase), np.max(limSetPhase))
|
||||
|
||||
for axT in ax4[:2]:
|
||||
axT.set_ylim(limSetGain)
|
||||
for axT in ax4[2:]:
|
||||
axT.set_ylim(limSetPhase)
|
||||
for axT in ax4[[1,3]]:
|
||||
LPRDefaultPlotting.axAnnotateCorner(axT,
|
||||
'%g dB gain variation' % (gain_variation), corner=2, ratio=0.04)
|
||||
axT.yaxis.tick_right()
|
||||
axT.yaxis.label_position='right'
|
||||
axT.yaxis.labelpad = axT.yaxis.labelpad + axT.yaxis.label.get_size()
|
||||
|
||||
for axT in ax4[[0,2]]:
|
||||
LPRDefaultPlotting.axAnnotateCorner(axT,
|
||||
'%g dB gain variation' % (0), corner=2, ratio=0.04)
|
||||
|
||||
for axT in ax4:
|
||||
axT.grid()
|
||||
axT.set_xlim((np.min(f.hz),np.max(f.hz)))
|
||||
axT.set_xlabel('Frequency (GHz)')
|
||||
|
||||
[hT.tight_layout() for hT in h4]
|
||||
[hT.tight_layout() for hT in h4]
|
||||
# Make XY mirror positions
|
||||
for i in [0,2]:
|
||||
p0 = ax4[i].get_position()
|
||||
p1 = ax4[i+1].get_position()
|
||||
p1.x1 = 1 - p0.x0
|
||||
p1.x0 = 1 - p0.x1
|
||||
ax4[i+1].set_position(p1)
|
||||
|
||||
for axT in ax4:
|
||||
p=axT.get_position()
|
||||
p.y1=0.88
|
||||
axT.set_position(p)
|
||||
|
||||
if args.save:
|
||||
h4[0].savefig('%s/%s.%s' % (figdir, 'dual_040-RMSGain', fig_ext))
|
||||
h4[1].savefig('%s/%s.%s' % (figdir, 'dual_041-RMSPhase', fig_ext))
|
||||
if HEADLESS:
|
||||
pp.close()
|
||||
else:
|
||||
#mgr.window.geometry(default_window_position[0])
|
||||
[hT.show() for hT in h4]
|
||||
|
|
161
parsePy.py
161
parsePy.py
|
@ -15,7 +15,7 @@ args_parser.add_argument('--polar','-p', action='store_true',
|
|||
help='do polar plotting (wide bandwidth)')
|
||||
args_parser.add_argument('--headless','-q', action='store_true',
|
||||
help='Remain neadless even if we aren\'t saving files.')
|
||||
args_parser.add_argument('-n', type=int, default=3,
|
||||
args_parser.add_argument('-n', type=int, default=4,
|
||||
help='plot testing number')
|
||||
args = args_parser.parse_args()
|
||||
|
||||
|
@ -36,6 +36,7 @@ import skrf as rf
|
|||
from scipy.io import loadmat
|
||||
from collections import namedtuple
|
||||
import LPRDefaultPlotting
|
||||
from tankComputers import *
|
||||
import re
|
||||
import json
|
||||
################################################################################
|
||||
|
@ -70,8 +71,10 @@ class MeasurementConfig(namedtuple('config', ['r','c','inv','bias'])):
|
|||
@property
|
||||
def fn_str(self):
|
||||
return "C%02d_R%1d_I%1d_B%0.4f" % (self.c, self.r, self.inv, self.bias)
|
||||
Measurement = namedtuple('measurement', ['cfg','gain','phase','f','s21', 'slope'])
|
||||
Measurement = namedtuple('measurement', ['cfg', 'pwr','gain','phase','f','s21', 'slope'])
|
||||
|
||||
plottingBandwidthMax = 2.01
|
||||
plottingBandwidthFreq = 28+np.array([-1,1])*0.5*plottingBandwidthMax
|
||||
slopeBandwidthMax = 1
|
||||
slopeBandwidthFreq = 28+np.array([-1,1])*0.5*slopeBandwidthMax
|
||||
|
||||
|
@ -90,7 +93,7 @@ BDE_list.append(BDE(
|
|||
np.array([ 4.06488853e-03, -5.11527396e-01, 2.53053550e+01]),
|
||||
np.array([-1.62202706e-03, 6.94343608e-01, -1.80381551e+02]),
|
||||
-60,
|
||||
'S02bB_C+02dB_M0'
|
||||
'S02bB_C+00dB_M0'
|
||||
))
|
||||
# 2018-05-16
|
||||
BDE_list.append(BDE(
|
||||
|
@ -98,7 +101,7 @@ BDE_list.append(BDE(
|
|||
np.array([ 4.08875413e-03, -5.13017311e-01, 2.54047949e+01]),
|
||||
np.array([-1.29541398e-03, 6.74431785e-01, -1.80127388e+02]),
|
||||
-60,
|
||||
'S02bB_C+02dB_M0'
|
||||
'S02bB_C+00dB_M0'
|
||||
))
|
||||
# 2018-05-21
|
||||
#PolyGain=np.array( [ 4.08875413e-03, -5.13017311e-01, 2.54047949e+01])
|
||||
|
@ -108,7 +111,7 @@ BDE_list.append(BDE(
|
|||
np.array([ 4.08875413e-03, -5.13017311e-01, 2.54047949e+01]),
|
||||
np.array([-1.29541398e-03, 6.74431785e-01, -1.80127388e+02]),
|
||||
-60,
|
||||
'S02bB_C+02dB_M0'
|
||||
'S02bB_C+00dB_M0'
|
||||
))
|
||||
# 2018-05-25
|
||||
#PolyGain=np.array( [ 4.06488853e-03, -5.11527396e-01, 2.53053550e+01])
|
||||
|
@ -118,7 +121,7 @@ BDE_list.append(BDE(
|
|||
np.array([ 4.06488853e-03, -5.11527396e-01, 2.53053550e+01]),
|
||||
np.array([-1.62202706e-03, 6.94343608e-01, -1.80381551e+02]),
|
||||
-70,
|
||||
'S02bB_C+06dB_M0'
|
||||
'S02bB_C+00dB_M0'
|
||||
))
|
||||
|
||||
source_directory='fromMat/%s_mat/' % SRC_DATA_NAME
|
||||
|
@ -131,6 +134,29 @@ for BDEx in BDE_list:
|
|||
FamStr=BDEx.mstr
|
||||
break
|
||||
|
||||
with open(SRC_DATA_SUMMARY, 'r') as h_sumDat:
|
||||
sumDat = json.load(h_sumDat)
|
||||
|
||||
def fetchSumDat_pwr(cfg):
|
||||
global sumDat
|
||||
mR = np.array(sumDat['r']) == cfg.r
|
||||
mC = np.array(sumDat['c']) == cfg.c
|
||||
mI = np.array(sumDat['inv']) == cfg.inv
|
||||
mB = np.abs(np.array(sumDat['bias_dp_set'])-cfg.bias) < 0.0005
|
||||
ind = np.squeeze(np.where(np.all((mR,mC,mI,mB),0)))
|
||||
if ind.size == 0:
|
||||
print("ERROR EVERYTHING IS BROKEN! AND i'M TIRED")
|
||||
return -1
|
||||
else:
|
||||
return sumDat['ivdd'][ind]*sumDat['vdd'][ind]
|
||||
|
||||
def sumTuple_avgMinMax(data_list):
|
||||
existing_data = []
|
||||
for datum in data_list:
|
||||
existing_data.extend([np.mean(datum), np.min(datum), np.max(datum)])
|
||||
return tuple(existing_data)
|
||||
|
||||
combined_rms=np.array([])
|
||||
for filename in os.listdir(source_directory):
|
||||
filename=source_directory+filename
|
||||
group_filename_string = filename.split('/')[-1][:-4]
|
||||
|
@ -147,24 +173,31 @@ for filename in os.listdir(source_directory):
|
|||
s2p_file = rf.Network(SRC_DATA_LOC + (FILE_PAT % pt.fn_str) )
|
||||
|
||||
freq = np.squeeze(s2p_file.f*1e-9)
|
||||
inds_keep = np.where(np.all((freq >= plottingBandwidthFreq[0],
|
||||
freq <= plottingBandwidthFreq[1]),0))
|
||||
|
||||
sdat_raw = np.squeeze(s2p_file.s21.s)
|
||||
freq = freq[inds_keep]
|
||||
sdat_raw = sdat_raw[inds_keep]
|
||||
|
||||
buffer_gain = np.polyval(PolyGain,freq)
|
||||
buffer_phase = np.polyval(PolyPhase,freq)
|
||||
buffer_phase = buffer_phase - np.mean(buffer_phase) + \
|
||||
PhaseFixedRotationFactor*np.pi/180
|
||||
buffer_sdat = np.power(10,buffer_gain/20)*np.exp(1j*buffer_phase)
|
||||
|
||||
sdat = np.squeeze(s2p_file.s21.s)/buffer_sdat
|
||||
sdat = sdat_raw/buffer_sdat
|
||||
|
||||
slope_valid_inds = np.where(np.all((freq >= slopeBandwidthFreq[0],
|
||||
freq <= slopeBandwidthFreq[1]),0))
|
||||
sub_angles = np.unwrap(np.angle(sdat[slope_valid_inds]))*180/np.pi
|
||||
sub_freq = freq[slope_valid_inds]-np.mean(freq[slope_valid_inds])
|
||||
slope = np.polyfit(sub_freq,sub_angles-np.mean(sub_angles),1)[0]
|
||||
index = np.squeeze(np.argwhere(freq==28))
|
||||
collectedData.append(Measurement(pt,
|
||||
dB20(sdat[index]),
|
||||
ang_deg(sdat[index]),
|
||||
freq, sdat, slope))
|
||||
index_f0 = np.squeeze(np.argwhere(freq==28))
|
||||
collectedData.append(Measurement(cfg=pt, pwr=fetchSumDat_pwr(pt),
|
||||
gain=dB20(sdat[index_f0]),
|
||||
phase=ang_deg(sdat[index_f0]),
|
||||
f=freq, s21=sdat, slope=slope))
|
||||
|
||||
# Find the indicies close to 0 and 180 as my reference curves
|
||||
phis = np.array([s.phase for s in collectedData])
|
||||
|
@ -172,44 +205,105 @@ for filename in os.listdir(source_directory):
|
|||
slope_list = np.array([s.slope for s in collectedData])
|
||||
slope_avg = np.mean(slope_list[best_slopes])
|
||||
|
||||
h=pp.figure()
|
||||
ref_index = np.argmin(np.abs(phis))
|
||||
unwrapped_ref_phase = 180/np.pi*np.unwrap(ang(collectedData[ref_index].s21))
|
||||
|
||||
if args.polar:
|
||||
h=pp.figure()
|
||||
ax=h.add_subplot(1,1,1, projection='polar')
|
||||
else:
|
||||
h2=pp.figure()
|
||||
h=pp.figure(figsize=(3.4*figScaleSize, 4.5*figScaleSize))
|
||||
h2=pp.figure(figsize=(3.4*figScaleSize, 2.8*figScaleSize))
|
||||
ax=h.subplots(2,1)
|
||||
ax = np.append(ax, h2.subplots(1,1))
|
||||
print("---------------------||------------------------------")
|
||||
print(" _C R I _Bias_ || Gain Phase ")
|
||||
print("---------------------||------------------------------")
|
||||
ax = np.append(ax, ax[1].twinx())
|
||||
ax = np.append(ax, ax[2].twinx())
|
||||
summary_msg = \
|
||||
"/---------------------\/----------------------------------------\\\n"\
|
||||
"| _C R I _Bias_ || Gain Phase Power |\n"\
|
||||
"|---------------------||----------------------------------------|\n"
|
||||
all_sdat = np.column_stack([imeas.s21 for imeas in collectedData])
|
||||
ang_rms = delta_rms(np.angle(all_sdat), 2*np.pi/16)*180/np.pi
|
||||
for imeas in collectedData:
|
||||
if args.polar:
|
||||
#ax.plot(ang(imeas.s21)-buffer_phase, dB20(imeas.s21)-buffer_gain)
|
||||
ax.plot(ang(imeas.s21), dB20(imeas.s21))
|
||||
else:
|
||||
#ax[0].plot(imeas.f, dB20(imeas.s21)-buffer_gain)
|
||||
ax[0].plot(imeas.f, dB20(imeas.s21))
|
||||
#unwrapped_phase = 180/np.pi*np.unwrap(ang(imeas.s21)-buffer_phase)
|
||||
#ax[1].plot(imeas.f, unwrapped_phase)
|
||||
unwrapped_phase = 180/np.pi*np.unwrap(ang(imeas.s21))
|
||||
ax[1].plot(imeas.f, unwrapped_phase)
|
||||
slope_relative = (imeas.f-28)*slope_avg
|
||||
ax[2].plot(imeas.f, unwrapped_phase-slope_relative)
|
||||
print(" %2d %d %d %.4f || %+7.1f dB %+9.2f deg" % \
|
||||
#ax[1].plot(imeas.f, unwrapped_phase)
|
||||
relative_phase_curve = unwrapped_phase-unwrapped_ref_phase
|
||||
if np.any(relative_phase_curve < 0):
|
||||
relative_phase_curve += 360
|
||||
#relative_phase_curve -= 180-22.5/2
|
||||
ax[1].plot(imeas.f, relative_phase_curve)
|
||||
#slope_relative = (imeas.f-28)*slope_avg
|
||||
#ax[2].plot(imeas.f, unwrapped_phase-slope_relative)
|
||||
ax[2].plot(imeas.f, relative_phase_curve)
|
||||
pwr_overage = int(2*(imeas.pwr*1e3 - 10))
|
||||
pwr_string = (int(pwr_overage/2)*"=") + (np.mod(pwr_overage,2)*">")
|
||||
summary_msg += "| %2d %d %d %.4f || "\
|
||||
" %+7.1f dB %+9.2f deg %4.1f mW |%s\n" % \
|
||||
(imeas.cfg.c, imeas.cfg.r, imeas.cfg.inv, imeas.cfg.bias, \
|
||||
imeas.gain, imeas.phase))
|
||||
print("---------------------||------------------------------")
|
||||
imeas.gain, imeas.phase, imeas.pwr*1e3, pwr_string)
|
||||
summary_msg += \
|
||||
"\_____________________/\________________________________________/\n"
|
||||
pwr_list=np.array([imeas.pwr*1e3 for imeas in collectedData])
|
||||
gain_list=np.array([imeas.gain for imeas in collectedData])
|
||||
|
||||
summary_msg += \
|
||||
"/ \\\n" \
|
||||
"|===> Power: % 7.1f mW (% 7.1f mW - % 7.1f mW) |\n" \
|
||||
"|===> Gain: %+7.1f dB (%+7.1f dB - %+7.1f dB) | \n" \
|
||||
"|===> RMS: %6.1f deg (%6.1f deg - %6.1f deg) | \n" \
|
||||
"\_______________________________________________________________/" % \
|
||||
(sumTuple_avgMinMax([pwr_list, gain_list, ang_rms]))
|
||||
if args.polar:
|
||||
ax.set_ylim(LPRDefaultPlotting.POLAR_YLIM_CONST)
|
||||
ax.set_ylim(LPRDefaultPlotting.POLAR_YLIM_CONST_MEAS)
|
||||
|
||||
if args.polar:
|
||||
ax.set_title('Measured Performance')
|
||||
else:
|
||||
# Usually this also has crappy lower ylimits, so we fix that here.
|
||||
# get ALL THE LOWER bounds
|
||||
np.min([np.min(line.get_ydata()) for line in ax[2].get_lines()])
|
||||
ax[0].set_title('Measured Performance')
|
||||
ax[0].set_ylabel('Gain (dB)');
|
||||
ax[1].set_ylabel('Phase (deg)');
|
||||
ax[2].set_ylabel('Phase (deg)');
|
||||
ax[0].set_ylabel('Gain (dB)')
|
||||
ax[1].set_ylabel('Relative Phase (deg)')
|
||||
ax[2].set_ylabel('Relative Phase (deg)')
|
||||
ax[2].set_title('Relative Phase')
|
||||
for i in range(3,5):
|
||||
aT=ax[i]
|
||||
aR=ax[i-2]
|
||||
# make the ticks, and the y-axis line up in a tidy manner
|
||||
# Recall that the ylimits should be 0-360 basically.
|
||||
aT.set_ylabel('RMS Error (deg)')
|
||||
aT.plot(imeas.f, ang_rms)
|
||||
|
||||
# The goal is to take the usual step size of 50,
|
||||
# and then equate that with a 1-degree step in RMS Error
|
||||
# and to then adjust the y-limit of the twin-axis to align
|
||||
# the grid markers
|
||||
if False:
|
||||
yRscl=np.diff(aR.get_yticks()[-2:])
|
||||
yTscl=np.diff(aT.get_yticks()[-2:])
|
||||
# Now find the ratio of the ylimits margin verses their
|
||||
# extreme tick marks.
|
||||
yRmrks = aR.get_yticks()[[0,-1]]
|
||||
yTmrks = aT.get_yticks()[[0,-1]]
|
||||
tickTotal = max(len(aT.get_yticks()), len(aR.get_yticks()))
|
||||
yRover = (aR.get_ylim()-yRmrks)/yRscl
|
||||
yTover = (aT.get_ylim()-yTmrks)/yTscl
|
||||
yRTover = np.stack((yRover,yTover))
|
||||
yXover = np.array([np.min(yRTover[:,0]), np.max(yRTover[:,1])])
|
||||
aR.set_ylim(yRscl*yXover + yRmrks)
|
||||
aT.set_ylim(yTscl*yXover + yTmrks)
|
||||
aT.set_ylim(aR.get_ylim()/np.array(50)+3)
|
||||
aT.grid()
|
||||
|
||||
aT.get_lines()[0].set_linewidth(2.0)
|
||||
aT.get_lines()[0].set_linestyle('-.')
|
||||
aT.get_lines()[0].set_color('black')
|
||||
for aT in ax:
|
||||
aT.set_xlabel('Frequency (GHz)')
|
||||
aT.grid()
|
||||
|
@ -225,6 +319,11 @@ for filename in os.listdir(source_directory):
|
|||
if not args.polar:
|
||||
h2.tight_layout()
|
||||
if args.save:
|
||||
with open('%s/Summary-%s-%s.txt' % (figdir, FamStr,
|
||||
group_filename_string), 'w') as summary_file:
|
||||
summary_file.write(summary_msg)
|
||||
summary_file.write("\n")
|
||||
summary_file.close()
|
||||
if args.polar:
|
||||
h.savefig('%s/PolarGain-%s-%s.%s' % (figdir, FamStr,
|
||||
group_filename_string, fig_ext))
|
||||
|
@ -233,6 +332,8 @@ for filename in os.listdir(source_directory):
|
|||
group_filename_string, fig_ext))
|
||||
h2.savefig('%s/RelStdPlots-%s-%s.%s' % (figdir, FamStr,
|
||||
group_filename_string, fig_ext))
|
||||
else:
|
||||
print(summary_msg)
|
||||
if HEADLESS:
|
||||
if not args.polar:
|
||||
pp.close()
|
||||
|
|
|
@ -15,6 +15,6 @@ for n in $(seq 1 4); do
|
|||
done
|
||||
|
||||
while [[ $(jobs -lr | wc -l) -gt 0 ]]; do sleep 0.1; done
|
||||
SELECT_STRING="S02bB_C+03dB"
|
||||
SELECT_STRING="S02bB_C+00dB"
|
||||
rsync -aPv "figures-measured/"*"${SELECT_STRING}"* ../tex/figures-measured/
|
||||
|
||||
|
|
|
@ -63,3 +63,19 @@ def rms_v_bw(err_sig, bandwidth_scale=1):
|
|||
rms = np.sqrt(np.cumsum(folded,0) / (ind*np.ones((folded.shape[1],1))).T )
|
||||
return (frac_step*bandwidth_scale, rms)
|
||||
|
||||
def delta_rms(signal, reference_delta, wrap_point=2*np.pi):
|
||||
"""compute the rms difference between various states and a reference"""
|
||||
# First compute the matrix difference including folding
|
||||
signal_delta = np.column_stack((
|
||||
signal[:,1:]-signal[:,:-1],
|
||||
signal[:,0]-signal[:,-1]
|
||||
))
|
||||
signal_delta = np.where(signal_delta>wrap_point/2, \
|
||||
signal_delta-wrap_point, signal_delta)
|
||||
signal_delta = np.where(signal_delta<-wrap_point/2, \
|
||||
signal_delta+wrap_point, signal_delta)
|
||||
signal_error = np.abs(signal_delta)-reference_delta
|
||||
|
||||
signal_rms = np.sqrt(np.mean(np.power(signal_error,2),1))
|
||||
|
||||
return signal_rms
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue