Added RMS error plotting to measured results. Theoretical is still a WiP.
This commit is contained in:
		
							parent
							
								
									852f4cad1d
								
							
						
					
					
						commit
						54f1c18e07
					
				
					 5 changed files with 235 additions and 42 deletions
				
			
		| 
						 | 
					@ -13,6 +13,7 @@ from matplotlib import rcParams, pyplot as pp
 | 
				
			||||||
from cycler import cycler
 | 
					from cycler import cycler
 | 
				
			||||||
 | 
					
 | 
				
			||||||
POLAR_YLIM_CONST=(-18,-6)
 | 
					POLAR_YLIM_CONST=(-18,-6)
 | 
				
			||||||
 | 
					POLAR_YLIM_CONST_MEAS=(-22,-10)
 | 
				
			||||||
POLAR_YLIM_CONST_ALT=(-32,-6)
 | 
					POLAR_YLIM_CONST_ALT=(-32,-6)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
fcFontList = FM.get_fontconfig_fonts()
 | 
					fcFontList = FM.get_fontconfig_fonts()
 | 
				
			||||||
| 
						 | 
					@ -54,6 +55,7 @@ rcParams['mathtext.bf'] = 'serif:bold'
 | 
				
			||||||
rcParams['mathtext.sf'] = 'serif'
 | 
					rcParams['mathtext.sf'] = 'serif'
 | 
				
			||||||
rcParams['mathtext.tt'] = 'monospace'
 | 
					rcParams['mathtext.tt'] = 'monospace'
 | 
				
			||||||
rcParams['lines.linewidth'] = 1.0
 | 
					rcParams['lines.linewidth'] = 1.0
 | 
				
			||||||
 | 
					#rcParams['axes.grid'] = True
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# axes.prop_cycle
 | 
					# axes.prop_cycle
 | 
				
			||||||
COLOR_CYCLE_LIST =  [
 | 
					COLOR_CYCLE_LIST =  [
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -66,12 +66,12 @@ from tankComputers import *
 | 
				
			||||||
freq_pts = 501
 | 
					freq_pts = 501
 | 
				
			||||||
 | 
					
 | 
				
			||||||
S1=TankGlobals.ampSystem()
 | 
					S1=TankGlobals.ampSystem()
 | 
				
			||||||
B=TankGlobals.bufferSystem()
 | 
					S1.bw_plt=2
 | 
				
			||||||
f=FreqClass(freq_pts, S1.f0, S1.bw_plt)
 | 
					f=FreqClass(freq_pts, S1.f0, S1.bw_plt)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
S1.q1_L = 15
 | 
					S1.q1_L = 15
 | 
				
			||||||
S2 = copy.deepcopy(S1)
 | 
					S2 = copy.deepcopy(S1)
 | 
				
			||||||
gain_variation = +4 # dB
 | 
					gain_variation = +5 # dB
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -105,8 +105,11 @@ tf_r_ang_ideal1 = wrap_rads(np.concatenate((-S1.phase_swp, -np.pi - S1.phase_swp
 | 
				
			||||||
tf_r_ang_ideal2 = wrap_rads(np.concatenate((-S2.phase_swp, -np.pi - S2.phase_swp)))
 | 
					tf_r_ang_ideal2 = wrap_rads(np.concatenate((-S2.phase_swp, -np.pi - S2.phase_swp)))
 | 
				
			||||||
tf_r_ang1 = np.angle(tf_r1)
 | 
					tf_r_ang1 = np.angle(tf_r1)
 | 
				
			||||||
tf_r_ang2 = np.angle(tf_r2)
 | 
					tf_r_ang2 = np.angle(tf_r2)
 | 
				
			||||||
tf_r_ang_rms1 = np.sqrt(np.mean(np.power(tf_r_ang1-tf_r_ang_ideal1,2),0))
 | 
					#tf_r_ang_rms1 = np.sqrt(np.mean(np.power(tf_r_ang1-tf_r_ang_ideal1,2),0))
 | 
				
			||||||
tf_r_ang_rms2 = np.sqrt(np.mean(np.power(tf_r_ang2-tf_r_ang_ideal2,2),0))
 | 
					#tf_r_ang_rms2 = np.sqrt(np.mean(np.power(tf_r_ang2-tf_r_ang_ideal2,2),0))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					tf_r_ang_rms1_f=delta_rms(tf_r_ang1, 2*np.pi/16)
 | 
				
			||||||
 | 
					tf_r_ang_rms2_f=delta_rms(tf_r_ang2, 2*np.pi/16)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
################################################################################
 | 
					################################################################################
 | 
				
			||||||
# Compute RMS phase error relative to ideal reference across plotting bandwidth
 | 
					# Compute RMS phase error relative to ideal reference across plotting bandwidth
 | 
				
			||||||
| 
						 | 
					@ -115,15 +118,13 @@ tf_r_ang_rms2 = np.sqrt(np.mean(np.power(tf_r_ang2-tf_r_ang_ideal2,2),0))
 | 
				
			||||||
(bw_ang2, rms_ang_swp2)=rms_v_bw(tf_r_ang2-tf_r_ang_ideal2, S2.bw_plt)
 | 
					(bw_ang2, rms_ang_swp2)=rms_v_bw(tf_r_ang2-tf_r_ang_ideal2, S2.bw_plt)
 | 
				
			||||||
(bw_mag2, rms_gain_swp2)=rms_v_bw(tf_r2, S2.bw_plt)
 | 
					(bw_mag2, rms_gain_swp2)=rms_v_bw(tf_r2, S2.bw_plt)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
(y_buf, tf_buf) = B.compute_ref(f)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
################################################################################
 | 
					################################################################################
 | 
				
			||||||
################################################################################
 | 
					################################################################################
 | 
				
			||||||
################################################################################
 | 
					################################################################################
 | 
				
			||||||
#mgr = pp.get_current_fig_manager()
 | 
					#mgr = pp.get_current_fig_manager()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
################################################################################
 | 
					################################################################################
 | 
				
			||||||
if 3 in plot_list or 13 in plot_list:
 | 
					if 3 in plot_list:
 | 
				
			||||||
	h3 = [pp.figure() for x in range(2)]
 | 
						h3 = [pp.figure() for x in range(2)]
 | 
				
			||||||
	ax3a = h3[0].subplots(1,2)
 | 
						ax3a = h3[0].subplots(1,2)
 | 
				
			||||||
	ax3b = h3[1].subplots(1,2)
 | 
						ax3b = h3[1].subplots(1,2)
 | 
				
			||||||
| 
						 | 
					@ -195,3 +196,76 @@ if 3 in plot_list or 13 in plot_list:
 | 
				
			||||||
	else:
 | 
						else:
 | 
				
			||||||
		#mgr.window.geometry(default_window_position[0])
 | 
							#mgr.window.geometry(default_window_position[0])
 | 
				
			||||||
		[hT.show() for hT in h3]
 | 
							[hT.show() for hT in h3]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if 4 in plot_list:
 | 
				
			||||||
 | 
						h4 = [pp.figure() for x in range(2)]
 | 
				
			||||||
 | 
						ax4a = h4[0].subplots(1,2)
 | 
				
			||||||
 | 
						ax4b = h4[1].subplots(1,2)
 | 
				
			||||||
 | 
						ax4 = np.concatenate((ax4a, ax4b))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						#ax4[0].plot(bw_mag1,dB20(rms_gain_swp1))
 | 
				
			||||||
 | 
						#ax4[1].plot(bw_mag2,dB20(rms_gain_swp2))
 | 
				
			||||||
 | 
						ax4[2].plot(f.hz,tf_r_ang_rms1_f*180/np.pi)
 | 
				
			||||||
 | 
						ax4[3].plot(f.hz,tf_r_ang_rms2_f*180/np.pi)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						h4[0].suptitle('RMS Gain Error')
 | 
				
			||||||
 | 
						h4[1].suptitle('RMS Phase Error')
 | 
				
			||||||
 | 
						#ax4[0].set_title('RMS Gain Error')
 | 
				
			||||||
 | 
						ax4[0].set_ylabel('Gain Error (dB)')
 | 
				
			||||||
 | 
						#ax4[2].set_title('RMS Phase Error')
 | 
				
			||||||
 | 
						ax4[2].set_ylabel('Phase Error (deg)')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						#ax4[1].set_title('RMS Gain Error w/GV')
 | 
				
			||||||
 | 
						ax4[1].set_ylabel('Gain Error (dB)')
 | 
				
			||||||
 | 
						#ax4[3].set_title('RMS Phase Error w/GV')
 | 
				
			||||||
 | 
						ax4[3].set_ylabel('Phase Error (deg)')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						# Match Axes
 | 
				
			||||||
 | 
						limSetGain = [axT.get_ylim() for axT in ax4[:2]]
 | 
				
			||||||
 | 
						limSetPhase = [axT.get_ylim() for axT in ax4[2:]]
 | 
				
			||||||
 | 
						limSetGain = (np.min(limSetGain), np.max(limSetGain))
 | 
				
			||||||
 | 
						limSetPhase = (np.min(limSetPhase), np.max(limSetPhase))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						for axT in ax4[:2]:
 | 
				
			||||||
 | 
							axT.set_ylim(limSetGain)
 | 
				
			||||||
 | 
						for axT in ax4[2:]:
 | 
				
			||||||
 | 
							axT.set_ylim(limSetPhase)
 | 
				
			||||||
 | 
						for axT in ax4[[1,3]]:
 | 
				
			||||||
 | 
							LPRDefaultPlotting.axAnnotateCorner(axT,
 | 
				
			||||||
 | 
								'%g dB gain variation' % (gain_variation), corner=2, ratio=0.04)
 | 
				
			||||||
 | 
							axT.yaxis.tick_right()
 | 
				
			||||||
 | 
							axT.yaxis.label_position='right'
 | 
				
			||||||
 | 
							axT.yaxis.labelpad = axT.yaxis.labelpad + axT.yaxis.label.get_size()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						for axT in ax4[[0,2]]:
 | 
				
			||||||
 | 
							LPRDefaultPlotting.axAnnotateCorner(axT,
 | 
				
			||||||
 | 
								'%g dB gain variation' % (0), corner=2, ratio=0.04)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						for axT in ax4:
 | 
				
			||||||
 | 
							axT.grid()
 | 
				
			||||||
 | 
							axT.set_xlim((np.min(f.hz),np.max(f.hz)))
 | 
				
			||||||
 | 
							axT.set_xlabel('Frequency (GHz)')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						[hT.tight_layout() for hT in h4]
 | 
				
			||||||
 | 
						[hT.tight_layout() for hT in h4]
 | 
				
			||||||
 | 
						# Make XY mirror positions
 | 
				
			||||||
 | 
						for i in [0,2]:
 | 
				
			||||||
 | 
							p0 = ax4[i].get_position()
 | 
				
			||||||
 | 
							p1 = ax4[i+1].get_position()
 | 
				
			||||||
 | 
							p1.x1 = 1 - p0.x0
 | 
				
			||||||
 | 
							p1.x0 = 1 - p0.x1
 | 
				
			||||||
 | 
							ax4[i+1].set_position(p1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						for axT in ax4:
 | 
				
			||||||
 | 
							p=axT.get_position()
 | 
				
			||||||
 | 
							p.y1=0.88
 | 
				
			||||||
 | 
							axT.set_position(p)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						if args.save:
 | 
				
			||||||
 | 
							h4[0].savefig('%s/%s.%s' % (figdir, 'dual_040-RMSGain', fig_ext))
 | 
				
			||||||
 | 
							h4[1].savefig('%s/%s.%s' % (figdir, 'dual_041-RMSPhase', fig_ext))
 | 
				
			||||||
 | 
						if HEADLESS:
 | 
				
			||||||
 | 
							pp.close()
 | 
				
			||||||
 | 
						else:
 | 
				
			||||||
 | 
							#mgr.window.geometry(default_window_position[0])
 | 
				
			||||||
 | 
							[hT.show() for hT in h4]
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										161
									
								
								parsePy.py
									
										
									
									
									
								
							
							
						
						
									
										161
									
								
								parsePy.py
									
										
									
									
									
								
							| 
						 | 
					@ -15,7 +15,7 @@ args_parser.add_argument('--polar','-p', action='store_true',
 | 
				
			||||||
	help='do polar plotting (wide bandwidth)')
 | 
						help='do polar plotting (wide bandwidth)')
 | 
				
			||||||
args_parser.add_argument('--headless','-q', action='store_true',
 | 
					args_parser.add_argument('--headless','-q', action='store_true',
 | 
				
			||||||
	help='Remain neadless even if we aren\'t saving files.')
 | 
						help='Remain neadless even if we aren\'t saving files.')
 | 
				
			||||||
args_parser.add_argument('-n', type=int, default=3,
 | 
					args_parser.add_argument('-n', type=int, default=4,
 | 
				
			||||||
	help='plot testing number')
 | 
						help='plot testing number')
 | 
				
			||||||
args = args_parser.parse_args()
 | 
					args = args_parser.parse_args()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -36,6 +36,7 @@ import skrf as rf
 | 
				
			||||||
from scipy.io import loadmat
 | 
					from scipy.io import loadmat
 | 
				
			||||||
from collections import namedtuple
 | 
					from collections import namedtuple
 | 
				
			||||||
import LPRDefaultPlotting
 | 
					import LPRDefaultPlotting
 | 
				
			||||||
 | 
					from tankComputers import *
 | 
				
			||||||
import re
 | 
					import re
 | 
				
			||||||
import json
 | 
					import json
 | 
				
			||||||
################################################################################
 | 
					################################################################################
 | 
				
			||||||
| 
						 | 
					@ -70,8 +71,10 @@ class MeasurementConfig(namedtuple('config', ['r','c','inv','bias'])):
 | 
				
			||||||
	@property
 | 
						@property
 | 
				
			||||||
	def fn_str(self):
 | 
						def fn_str(self):
 | 
				
			||||||
		return "C%02d_R%1d_I%1d_B%0.4f" % (self.c, self.r, self.inv, self.bias)
 | 
							return "C%02d_R%1d_I%1d_B%0.4f" % (self.c, self.r, self.inv, self.bias)
 | 
				
			||||||
Measurement = namedtuple('measurement', ['cfg','gain','phase','f','s21', 'slope'])
 | 
					Measurement = namedtuple('measurement', ['cfg', 'pwr','gain','phase','f','s21', 'slope'])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					plottingBandwidthMax = 2.01
 | 
				
			||||||
 | 
					plottingBandwidthFreq = 28+np.array([-1,1])*0.5*plottingBandwidthMax
 | 
				
			||||||
slopeBandwidthMax = 1
 | 
					slopeBandwidthMax = 1
 | 
				
			||||||
slopeBandwidthFreq = 28+np.array([-1,1])*0.5*slopeBandwidthMax
 | 
					slopeBandwidthFreq = 28+np.array([-1,1])*0.5*slopeBandwidthMax
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -90,7 +93,7 @@ BDE_list.append(BDE(
 | 
				
			||||||
	np.array([ 4.06488853e-03, -5.11527396e-01,  2.53053550e+01]),
 | 
						np.array([ 4.06488853e-03, -5.11527396e-01,  2.53053550e+01]),
 | 
				
			||||||
	np.array([-1.62202706e-03,  6.94343608e-01, -1.80381551e+02]),
 | 
						np.array([-1.62202706e-03,  6.94343608e-01, -1.80381551e+02]),
 | 
				
			||||||
	-60,
 | 
						-60,
 | 
				
			||||||
	'S02bB_C+02dB_M0'
 | 
						'S02bB_C+00dB_M0'
 | 
				
			||||||
))
 | 
					))
 | 
				
			||||||
# 2018-05-16
 | 
					# 2018-05-16
 | 
				
			||||||
BDE_list.append(BDE(
 | 
					BDE_list.append(BDE(
 | 
				
			||||||
| 
						 | 
					@ -98,7 +101,7 @@ BDE_list.append(BDE(
 | 
				
			||||||
	np.array([ 4.08875413e-03, -5.13017311e-01,  2.54047949e+01]),
 | 
						np.array([ 4.08875413e-03, -5.13017311e-01,  2.54047949e+01]),
 | 
				
			||||||
	np.array([-1.29541398e-03,  6.74431785e-01, -1.80127388e+02]),
 | 
						np.array([-1.29541398e-03,  6.74431785e-01, -1.80127388e+02]),
 | 
				
			||||||
	-60,
 | 
						-60,
 | 
				
			||||||
	'S02bB_C+02dB_M0'
 | 
						'S02bB_C+00dB_M0'
 | 
				
			||||||
))
 | 
					))
 | 
				
			||||||
# 2018-05-21
 | 
					# 2018-05-21
 | 
				
			||||||
#PolyGain=np.array( [ 4.08875413e-03, -5.13017311e-01,  2.54047949e+01])
 | 
					#PolyGain=np.array( [ 4.08875413e-03, -5.13017311e-01,  2.54047949e+01])
 | 
				
			||||||
| 
						 | 
					@ -108,7 +111,7 @@ BDE_list.append(BDE(
 | 
				
			||||||
	np.array([ 4.08875413e-03, -5.13017311e-01,  2.54047949e+01]),
 | 
						np.array([ 4.08875413e-03, -5.13017311e-01,  2.54047949e+01]),
 | 
				
			||||||
	np.array([-1.29541398e-03,  6.74431785e-01, -1.80127388e+02]),
 | 
						np.array([-1.29541398e-03,  6.74431785e-01, -1.80127388e+02]),
 | 
				
			||||||
	-60,
 | 
						-60,
 | 
				
			||||||
	'S02bB_C+02dB_M0'
 | 
						'S02bB_C+00dB_M0'
 | 
				
			||||||
))
 | 
					))
 | 
				
			||||||
# 2018-05-25
 | 
					# 2018-05-25
 | 
				
			||||||
#PolyGain=np.array( [ 4.06488853e-03, -5.11527396e-01,  2.53053550e+01])
 | 
					#PolyGain=np.array( [ 4.06488853e-03, -5.11527396e-01,  2.53053550e+01])
 | 
				
			||||||
| 
						 | 
					@ -118,7 +121,7 @@ BDE_list.append(BDE(
 | 
				
			||||||
	np.array([ 4.06488853e-03, -5.11527396e-01,  2.53053550e+01]),
 | 
						np.array([ 4.06488853e-03, -5.11527396e-01,  2.53053550e+01]),
 | 
				
			||||||
	np.array([-1.62202706e-03,  6.94343608e-01, -1.80381551e+02]),
 | 
						np.array([-1.62202706e-03,  6.94343608e-01, -1.80381551e+02]),
 | 
				
			||||||
	-70,
 | 
						-70,
 | 
				
			||||||
	'S02bB_C+06dB_M0'
 | 
						'S02bB_C+00dB_M0'
 | 
				
			||||||
))
 | 
					))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
source_directory='fromMat/%s_mat/' % SRC_DATA_NAME
 | 
					source_directory='fromMat/%s_mat/' % SRC_DATA_NAME
 | 
				
			||||||
| 
						 | 
					@ -131,6 +134,29 @@ for BDEx in BDE_list:
 | 
				
			||||||
		FamStr=BDEx.mstr
 | 
							FamStr=BDEx.mstr
 | 
				
			||||||
		break
 | 
							break
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					with open(SRC_DATA_SUMMARY, 'r') as h_sumDat:
 | 
				
			||||||
 | 
						sumDat = json.load(h_sumDat)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def fetchSumDat_pwr(cfg):
 | 
				
			||||||
 | 
						global sumDat
 | 
				
			||||||
 | 
						mR = np.array(sumDat['r']) == cfg.r
 | 
				
			||||||
 | 
						mC = np.array(sumDat['c']) == cfg.c
 | 
				
			||||||
 | 
						mI = np.array(sumDat['inv']) == cfg.inv
 | 
				
			||||||
 | 
						mB = np.abs(np.array(sumDat['bias_dp_set'])-cfg.bias) < 0.0005
 | 
				
			||||||
 | 
						ind = np.squeeze(np.where(np.all((mR,mC,mI,mB),0)))
 | 
				
			||||||
 | 
						if ind.size == 0:
 | 
				
			||||||
 | 
							print("ERROR EVERYTHING IS BROKEN! AND i'M TIRED")
 | 
				
			||||||
 | 
							return -1
 | 
				
			||||||
 | 
						else:
 | 
				
			||||||
 | 
							return sumDat['ivdd'][ind]*sumDat['vdd'][ind]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def sumTuple_avgMinMax(data_list):
 | 
				
			||||||
 | 
						existing_data = []
 | 
				
			||||||
 | 
						for datum in data_list:
 | 
				
			||||||
 | 
							existing_data.extend([np.mean(datum), np.min(datum), np.max(datum)])
 | 
				
			||||||
 | 
						return tuple(existing_data)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					combined_rms=np.array([])
 | 
				
			||||||
for filename in os.listdir(source_directory):
 | 
					for filename in os.listdir(source_directory):
 | 
				
			||||||
	filename=source_directory+filename
 | 
						filename=source_directory+filename
 | 
				
			||||||
	group_filename_string = filename.split('/')[-1][:-4]
 | 
						group_filename_string = filename.split('/')[-1][:-4]
 | 
				
			||||||
| 
						 | 
					@ -147,24 +173,31 @@ for filename in os.listdir(source_directory):
 | 
				
			||||||
		s2p_file = rf.Network(SRC_DATA_LOC + (FILE_PAT % pt.fn_str) )
 | 
							s2p_file = rf.Network(SRC_DATA_LOC + (FILE_PAT % pt.fn_str) )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		freq = np.squeeze(s2p_file.f*1e-9)
 | 
							freq = np.squeeze(s2p_file.f*1e-9)
 | 
				
			||||||
 | 
							inds_keep = np.where(np.all((freq >= plottingBandwidthFreq[0],
 | 
				
			||||||
 | 
								freq <= plottingBandwidthFreq[1]),0))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
							sdat_raw = np.squeeze(s2p_file.s21.s)
 | 
				
			||||||
 | 
							freq = freq[inds_keep]
 | 
				
			||||||
 | 
							sdat_raw = sdat_raw[inds_keep]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		buffer_gain = np.polyval(PolyGain,freq)
 | 
							buffer_gain = np.polyval(PolyGain,freq)
 | 
				
			||||||
		buffer_phase = np.polyval(PolyPhase,freq)
 | 
							buffer_phase = np.polyval(PolyPhase,freq)
 | 
				
			||||||
		buffer_phase = buffer_phase - np.mean(buffer_phase) + \
 | 
							buffer_phase = buffer_phase - np.mean(buffer_phase) + \
 | 
				
			||||||
			PhaseFixedRotationFactor*np.pi/180
 | 
								PhaseFixedRotationFactor*np.pi/180
 | 
				
			||||||
		buffer_sdat = np.power(10,buffer_gain/20)*np.exp(1j*buffer_phase)
 | 
							buffer_sdat = np.power(10,buffer_gain/20)*np.exp(1j*buffer_phase)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		sdat = np.squeeze(s2p_file.s21.s)/buffer_sdat
 | 
							sdat = sdat_raw/buffer_sdat
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		slope_valid_inds = np.where(np.all((freq >= slopeBandwidthFreq[0],
 | 
							slope_valid_inds = np.where(np.all((freq >= slopeBandwidthFreq[0],
 | 
				
			||||||
			freq <= slopeBandwidthFreq[1]),0))
 | 
								freq <= slopeBandwidthFreq[1]),0))
 | 
				
			||||||
		sub_angles = np.unwrap(np.angle(sdat[slope_valid_inds]))*180/np.pi
 | 
							sub_angles = np.unwrap(np.angle(sdat[slope_valid_inds]))*180/np.pi
 | 
				
			||||||
		sub_freq = freq[slope_valid_inds]-np.mean(freq[slope_valid_inds])
 | 
							sub_freq = freq[slope_valid_inds]-np.mean(freq[slope_valid_inds])
 | 
				
			||||||
		slope = np.polyfit(sub_freq,sub_angles-np.mean(sub_angles),1)[0]
 | 
							slope = np.polyfit(sub_freq,sub_angles-np.mean(sub_angles),1)[0]
 | 
				
			||||||
		index = np.squeeze(np.argwhere(freq==28))
 | 
							index_f0 = np.squeeze(np.argwhere(freq==28))
 | 
				
			||||||
		collectedData.append(Measurement(pt,
 | 
							collectedData.append(Measurement(cfg=pt, pwr=fetchSumDat_pwr(pt),
 | 
				
			||||||
			dB20(sdat[index]),
 | 
								gain=dB20(sdat[index_f0]),
 | 
				
			||||||
			ang_deg(sdat[index]),
 | 
								phase=ang_deg(sdat[index_f0]),
 | 
				
			||||||
			freq, sdat, slope))
 | 
								f=freq, s21=sdat, slope=slope))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	# Find the indicies close to 0 and 180 as my reference curves
 | 
						# Find the indicies close to 0 and 180 as my reference curves
 | 
				
			||||||
	phis = np.array([s.phase for s in collectedData])
 | 
						phis = np.array([s.phase for s in collectedData])
 | 
				
			||||||
| 
						 | 
					@ -172,44 +205,105 @@ for filename in os.listdir(source_directory):
 | 
				
			||||||
	slope_list = np.array([s.slope for s in collectedData])
 | 
						slope_list = np.array([s.slope for s in collectedData])
 | 
				
			||||||
	slope_avg = np.mean(slope_list[best_slopes])
 | 
						slope_avg = np.mean(slope_list[best_slopes])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	h=pp.figure()
 | 
						ref_index = np.argmin(np.abs(phis))
 | 
				
			||||||
 | 
						unwrapped_ref_phase = 180/np.pi*np.unwrap(ang(collectedData[ref_index].s21))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	if args.polar:
 | 
						if args.polar:
 | 
				
			||||||
 | 
							h=pp.figure()
 | 
				
			||||||
		ax=h.add_subplot(1,1,1, projection='polar')
 | 
							ax=h.add_subplot(1,1,1, projection='polar')
 | 
				
			||||||
	else:
 | 
						else:
 | 
				
			||||||
		h2=pp.figure()
 | 
							h=pp.figure(figsize=(3.4*figScaleSize, 4.5*figScaleSize))
 | 
				
			||||||
 | 
							h2=pp.figure(figsize=(3.4*figScaleSize, 2.8*figScaleSize))
 | 
				
			||||||
		ax=h.subplots(2,1)
 | 
							ax=h.subplots(2,1)
 | 
				
			||||||
		ax = np.append(ax, h2.subplots(1,1))
 | 
							ax = np.append(ax, h2.subplots(1,1))
 | 
				
			||||||
	print("---------------------||------------------------------")
 | 
							ax = np.append(ax, ax[1].twinx())
 | 
				
			||||||
	print("  _C  R  I  _Bias_   ||       Gain          Phase  ")
 | 
							ax = np.append(ax, ax[2].twinx())
 | 
				
			||||||
	print("---------------------||------------------------------")
 | 
						summary_msg = \
 | 
				
			||||||
 | 
							"/---------------------\/----------------------------------------\\\n"\
 | 
				
			||||||
 | 
							"|  _C  R  I  _Bias_   ||       Gain          Phase       Power  |\n"\
 | 
				
			||||||
 | 
							"|---------------------||----------------------------------------|\n"
 | 
				
			||||||
 | 
						all_sdat = np.column_stack([imeas.s21 for imeas in collectedData])
 | 
				
			||||||
 | 
						ang_rms = delta_rms(np.angle(all_sdat), 2*np.pi/16)*180/np.pi
 | 
				
			||||||
	for imeas in collectedData:
 | 
						for imeas in collectedData:
 | 
				
			||||||
		if args.polar:
 | 
							if args.polar:
 | 
				
			||||||
			#ax.plot(ang(imeas.s21)-buffer_phase, dB20(imeas.s21)-buffer_gain)
 | 
								#ax.plot(ang(imeas.s21)-buffer_phase, dB20(imeas.s21)-buffer_gain)
 | 
				
			||||||
			ax.plot(ang(imeas.s21), dB20(imeas.s21))
 | 
								ax.plot(ang(imeas.s21), dB20(imeas.s21))
 | 
				
			||||||
		else:
 | 
							else:
 | 
				
			||||||
			#ax[0].plot(imeas.f, dB20(imeas.s21)-buffer_gain)
 | 
					 | 
				
			||||||
			ax[0].plot(imeas.f, dB20(imeas.s21))
 | 
								ax[0].plot(imeas.f, dB20(imeas.s21))
 | 
				
			||||||
			#unwrapped_phase = 180/np.pi*np.unwrap(ang(imeas.s21)-buffer_phase)
 | 
					 | 
				
			||||||
			#ax[1].plot(imeas.f, unwrapped_phase)
 | 
					 | 
				
			||||||
			unwrapped_phase = 180/np.pi*np.unwrap(ang(imeas.s21))
 | 
								unwrapped_phase = 180/np.pi*np.unwrap(ang(imeas.s21))
 | 
				
			||||||
			ax[1].plot(imeas.f, unwrapped_phase)
 | 
								#ax[1].plot(imeas.f, unwrapped_phase)
 | 
				
			||||||
			slope_relative = (imeas.f-28)*slope_avg
 | 
								relative_phase_curve = unwrapped_phase-unwrapped_ref_phase
 | 
				
			||||||
			ax[2].plot(imeas.f, unwrapped_phase-slope_relative)
 | 
								if np.any(relative_phase_curve < 0):
 | 
				
			||||||
		print("  %2d  %d  %d  %.4f   ||   %+7.1f dB   %+9.2f deg" % \
 | 
									relative_phase_curve += 360
 | 
				
			||||||
 | 
								#relative_phase_curve -= 180-22.5/2
 | 
				
			||||||
 | 
								ax[1].plot(imeas.f, relative_phase_curve)
 | 
				
			||||||
 | 
								#slope_relative = (imeas.f-28)*slope_avg
 | 
				
			||||||
 | 
								#ax[2].plot(imeas.f, unwrapped_phase-slope_relative)
 | 
				
			||||||
 | 
								ax[2].plot(imeas.f, relative_phase_curve)
 | 
				
			||||||
 | 
							pwr_overage = int(2*(imeas.pwr*1e3 - 10))
 | 
				
			||||||
 | 
							pwr_string = (int(pwr_overage/2)*"=") + (np.mod(pwr_overage,2)*">")
 | 
				
			||||||
 | 
							summary_msg += "|  %2d  %d  %d  %.4f   || "\
 | 
				
			||||||
 | 
								"  %+7.1f dB   %+9.2f deg   %4.1f mW |%s\n" % \
 | 
				
			||||||
			(imeas.cfg.c, imeas.cfg.r, imeas.cfg.inv, imeas.cfg.bias, \
 | 
								(imeas.cfg.c, imeas.cfg.r, imeas.cfg.inv, imeas.cfg.bias, \
 | 
				
			||||||
				imeas.gain, imeas.phase))
 | 
									imeas.gain, imeas.phase, imeas.pwr*1e3, pwr_string)
 | 
				
			||||||
	print("---------------------||------------------------------")
 | 
						summary_msg += \
 | 
				
			||||||
 | 
						 	"\_____________________/\________________________________________/\n"
 | 
				
			||||||
 | 
						pwr_list=np.array([imeas.pwr*1e3 for imeas in collectedData])
 | 
				
			||||||
 | 
						gain_list=np.array([imeas.gain for imeas in collectedData])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						summary_msg += \
 | 
				
			||||||
 | 
						 	"/                                                               \\\n" \
 | 
				
			||||||
 | 
						 	"|===>    Power: % 7.1f mW (% 7.1f mW -  % 7.1f mW)           |\n" \
 | 
				
			||||||
 | 
						 	"|===>     Gain: %+7.1f dB (%+7.1f dB -  %+7.1f dB)           | \n" \
 | 
				
			||||||
 | 
						 	"|===>      RMS: %6.1f deg (%6.1f deg -  %6.1f deg)           | \n" \
 | 
				
			||||||
 | 
						 	"\_______________________________________________________________/" % \
 | 
				
			||||||
 | 
							(sumTuple_avgMinMax([pwr_list, gain_list, ang_rms]))
 | 
				
			||||||
	if args.polar:
 | 
						if args.polar:
 | 
				
			||||||
		ax.set_ylim(LPRDefaultPlotting.POLAR_YLIM_CONST)
 | 
							ax.set_ylim(LPRDefaultPlotting.POLAR_YLIM_CONST_MEAS)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	if args.polar:
 | 
						if args.polar:
 | 
				
			||||||
		ax.set_title('Measured Performance')
 | 
							ax.set_title('Measured Performance')
 | 
				
			||||||
	else:
 | 
						else:
 | 
				
			||||||
 | 
							# Usually this also has crappy lower ylimits, so we fix that here.
 | 
				
			||||||
 | 
							# get ALL THE LOWER bounds
 | 
				
			||||||
 | 
							np.min([np.min(line.get_ydata()) for line in ax[2].get_lines()])
 | 
				
			||||||
		ax[0].set_title('Measured Performance')
 | 
							ax[0].set_title('Measured Performance')
 | 
				
			||||||
		ax[0].set_ylabel('Gain (dB)');
 | 
							ax[0].set_ylabel('Gain (dB)')
 | 
				
			||||||
		ax[1].set_ylabel('Phase (deg)');
 | 
							ax[1].set_ylabel('Relative Phase (deg)')
 | 
				
			||||||
		ax[2].set_ylabel('Phase (deg)');
 | 
							ax[2].set_ylabel('Relative Phase (deg)')
 | 
				
			||||||
		ax[2].set_title('Relative Phase')
 | 
							ax[2].set_title('Relative Phase')
 | 
				
			||||||
 | 
							for i in range(3,5):
 | 
				
			||||||
 | 
								aT=ax[i]
 | 
				
			||||||
 | 
								aR=ax[i-2]
 | 
				
			||||||
 | 
								# make the ticks, and the y-axis line up in a tidy manner
 | 
				
			||||||
 | 
								# Recall that the ylimits should be 0-360 basically.
 | 
				
			||||||
 | 
								aT.set_ylabel('RMS Error (deg)')
 | 
				
			||||||
 | 
								aT.plot(imeas.f, ang_rms)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
								# The goal is to take the usual step size of 50,
 | 
				
			||||||
 | 
								# and then equate that with a 1-degree step in RMS Error
 | 
				
			||||||
 | 
								# and to then adjust the y-limit of the twin-axis to align
 | 
				
			||||||
 | 
								# the grid markers
 | 
				
			||||||
 | 
								if False:
 | 
				
			||||||
 | 
									yRscl=np.diff(aR.get_yticks()[-2:])
 | 
				
			||||||
 | 
									yTscl=np.diff(aT.get_yticks()[-2:])
 | 
				
			||||||
 | 
									# Now find the ratio of the ylimits margin verses their
 | 
				
			||||||
 | 
									# extreme tick marks.
 | 
				
			||||||
 | 
									yRmrks = aR.get_yticks()[[0,-1]]
 | 
				
			||||||
 | 
									yTmrks = aT.get_yticks()[[0,-1]]
 | 
				
			||||||
 | 
									tickTotal = max(len(aT.get_yticks()), len(aR.get_yticks()))
 | 
				
			||||||
 | 
									yRover = (aR.get_ylim()-yRmrks)/yRscl
 | 
				
			||||||
 | 
									yTover = (aT.get_ylim()-yTmrks)/yTscl
 | 
				
			||||||
 | 
									yRTover = np.stack((yRover,yTover))
 | 
				
			||||||
 | 
									yXover = np.array([np.min(yRTover[:,0]), np.max(yRTover[:,1])])
 | 
				
			||||||
 | 
									aR.set_ylim(yRscl*yXover + yRmrks)
 | 
				
			||||||
 | 
									aT.set_ylim(yTscl*yXover + yTmrks)
 | 
				
			||||||
 | 
								aT.set_ylim(aR.get_ylim()/np.array(50)+3)
 | 
				
			||||||
 | 
								aT.grid()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
								aT.get_lines()[0].set_linewidth(2.0)
 | 
				
			||||||
 | 
								aT.get_lines()[0].set_linestyle('-.')
 | 
				
			||||||
 | 
								aT.get_lines()[0].set_color('black')
 | 
				
			||||||
		for aT in ax:
 | 
							for aT in ax:
 | 
				
			||||||
			aT.set_xlabel('Frequency (GHz)')
 | 
								aT.set_xlabel('Frequency (GHz)')
 | 
				
			||||||
			aT.grid()
 | 
								aT.grid()
 | 
				
			||||||
| 
						 | 
					@ -225,6 +319,11 @@ for filename in os.listdir(source_directory):
 | 
				
			||||||
	if not args.polar:
 | 
						if not args.polar:
 | 
				
			||||||
		h2.tight_layout()
 | 
							h2.tight_layout()
 | 
				
			||||||
	if args.save:
 | 
						if args.save:
 | 
				
			||||||
 | 
							with open('%s/Summary-%s-%s.txt' % (figdir, FamStr,
 | 
				
			||||||
 | 
								group_filename_string), 'w') as summary_file:
 | 
				
			||||||
 | 
								summary_file.write(summary_msg)
 | 
				
			||||||
 | 
								summary_file.write("\n")
 | 
				
			||||||
 | 
								summary_file.close()
 | 
				
			||||||
		if args.polar:
 | 
							if args.polar:
 | 
				
			||||||
			h.savefig('%s/PolarGain-%s-%s.%s' % (figdir, FamStr,
 | 
								h.savefig('%s/PolarGain-%s-%s.%s' % (figdir, FamStr,
 | 
				
			||||||
				group_filename_string, fig_ext))
 | 
									group_filename_string, fig_ext))
 | 
				
			||||||
| 
						 | 
					@ -233,6 +332,8 @@ for filename in os.listdir(source_directory):
 | 
				
			||||||
				group_filename_string, fig_ext))
 | 
									group_filename_string, fig_ext))
 | 
				
			||||||
			h2.savefig('%s/RelStdPlots-%s-%s.%s' % (figdir, FamStr,
 | 
								h2.savefig('%s/RelStdPlots-%s-%s.%s' % (figdir, FamStr,
 | 
				
			||||||
				group_filename_string, fig_ext))
 | 
									group_filename_string, fig_ext))
 | 
				
			||||||
 | 
						else:
 | 
				
			||||||
 | 
							print(summary_msg)
 | 
				
			||||||
	if HEADLESS:
 | 
						if HEADLESS:
 | 
				
			||||||
		if not args.polar:
 | 
							if not args.polar:
 | 
				
			||||||
			pp.close()
 | 
								pp.close()
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -15,6 +15,6 @@ for n in $(seq 1 4); do
 | 
				
			||||||
done
 | 
					done
 | 
				
			||||||
 | 
					
 | 
				
			||||||
while [[ $(jobs -lr | wc -l) -gt 0 ]]; do sleep 0.1; done
 | 
					while [[ $(jobs -lr | wc -l) -gt 0 ]]; do sleep 0.1; done
 | 
				
			||||||
SELECT_STRING="S02bB_C+03dB"
 | 
					SELECT_STRING="S02bB_C+00dB"
 | 
				
			||||||
rsync -aPv "figures-measured/"*"${SELECT_STRING}"* ../tex/figures-measured/
 | 
					rsync -aPv "figures-measured/"*"${SELECT_STRING}"* ../tex/figures-measured/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -63,3 +63,19 @@ def rms_v_bw(err_sig, bandwidth_scale=1):
 | 
				
			||||||
	rms = np.sqrt(np.cumsum(folded,0) / (ind*np.ones((folded.shape[1],1))).T )
 | 
						rms = np.sqrt(np.cumsum(folded,0) / (ind*np.ones((folded.shape[1],1))).T )
 | 
				
			||||||
	return (frac_step*bandwidth_scale, rms)
 | 
						return (frac_step*bandwidth_scale, rms)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def delta_rms(signal, reference_delta, wrap_point=2*np.pi):
 | 
				
			||||||
 | 
						"""compute the rms difference between various states and a reference"""
 | 
				
			||||||
 | 
						# First compute the matrix difference including folding
 | 
				
			||||||
 | 
						signal_delta = np.column_stack((
 | 
				
			||||||
 | 
							signal[:,1:]-signal[:,:-1],
 | 
				
			||||||
 | 
							signal[:,0]-signal[:,-1]
 | 
				
			||||||
 | 
							))
 | 
				
			||||||
 | 
						signal_delta = np.where(signal_delta>wrap_point/2, \
 | 
				
			||||||
 | 
							signal_delta-wrap_point, signal_delta)
 | 
				
			||||||
 | 
						signal_delta = np.where(signal_delta<-wrap_point/2, \
 | 
				
			||||||
 | 
							signal_delta+wrap_point, signal_delta)
 | 
				
			||||||
 | 
						signal_error = np.abs(signal_delta)-reference_delta
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						signal_rms = np.sqrt(np.mean(np.power(signal_error,2),1))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						return signal_rms
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue