Major refactor to ease duplicate computations and plotting
This commit is contained in:
		
							parent
							
								
									d6d75b804f
								
							
						
					
					
						commit
						539c2f7481
					
				
					 4 changed files with 326 additions and 120 deletions
				
			
		
							
								
								
									
										62
									
								
								FreqClass.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										62
									
								
								FreqClass.py
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,62 @@
 | 
			
		|||
#!/usr/bin/env python3
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
class FreqClass:
 | 
			
		||||
	def __init__(self, steps, f0, bw):
 | 
			
		||||
		self.f0 = f0
 | 
			
		||||
		self._bw = bw
 | 
			
		||||
		self._steps = steps;
 | 
			
		||||
		self._update_delta()
 | 
			
		||||
	
 | 
			
		||||
	def _update_delta(self):
 | 
			
		||||
		self._delta = self._bw/self.f0*np.linspace(-1/2,1/2,self._steps)
 | 
			
		||||
	
 | 
			
		||||
	def __repr__(self):
 | 
			
		||||
		return self.__str__()
 | 
			
		||||
	def __str__(self):
 | 
			
		||||
		return "%gGHz, %gGHz BW sweep [%d points]" % \
 | 
			
		||||
			(self.f0, self._bw, self._steps)
 | 
			
		||||
	
 | 
			
		||||
	@property
 | 
			
		||||
	def hz_range(self):
 | 
			
		||||
		return (np.min(self.hz), np.max(self.hz))
 | 
			
		||||
	
 | 
			
		||||
	@property
 | 
			
		||||
	def delta(self):
 | 
			
		||||
		return self._delta
 | 
			
		||||
	@property
 | 
			
		||||
	def bw(self):
 | 
			
		||||
		return self._bw
 | 
			
		||||
	@bw.setter
 | 
			
		||||
	def bw(self, bw):
 | 
			
		||||
		self._bw = bw
 | 
			
		||||
		self._update_delta()
 | 
			
		||||
	
 | 
			
		||||
	@property
 | 
			
		||||
	def steps(self):
 | 
			
		||||
		return self._steps
 | 
			
		||||
	@steps.setter
 | 
			
		||||
	def steps(self, steps):
 | 
			
		||||
		self._steps = steps
 | 
			
		||||
		self._update_delta()
 | 
			
		||||
	
 | 
			
		||||
	@property
 | 
			
		||||
	def hz(self):
 | 
			
		||||
		return self.f0*(1+self._delta)
 | 
			
		||||
	@property
 | 
			
		||||
	def f(self):
 | 
			
		||||
		return self.hz
 | 
			
		||||
	@property
 | 
			
		||||
	def rad(self):
 | 
			
		||||
		return 2*np.pi*self.f0*(1+self._delta)
 | 
			
		||||
	@property
 | 
			
		||||
	def w(self):
 | 
			
		||||
		return self.rad
 | 
			
		||||
	@property
 | 
			
		||||
	def jw(self):
 | 
			
		||||
		return 2j*np.pi*self.f0*(1+self._delta)
 | 
			
		||||
	@property
 | 
			
		||||
	def delta(self):
 | 
			
		||||
		return self._delta
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										188
									
								
								TankGlobals.py
									
										
									
									
									
								
							
							
						
						
									
										188
									
								
								TankGlobals.py
									
										
									
									
									
								
							| 
						 | 
				
			
			@ -1,50 +1,164 @@
 | 
			
		|||
#!/usr/bin/env python3
 | 
			
		||||
import numpy as np
 | 
			
		||||
import sys
 | 
			
		||||
 | 
			
		||||
################################################################################
 | 
			
		||||
# BEWARE, FOR BEYOND THIS POINT THERE BE DRAGONS! THIS IS ONLY FOR EASE OF
 | 
			
		||||
# GENERATING ACADEMIC PUBLICATIONS AND FIGURES, NEVER DO THIS SHIT!
 | 
			
		||||
################################################################################
 | 
			
		||||
 | 
			
		||||
def g1_map_default(system):
 | 
			
		||||
	# compute correction factor for g1 that will produce common gain at f0
 | 
			
		||||
	g1_swp = system.g1 * np.sin(np.pi/2-system.phase_swp) / system.alpha_swp
 | 
			
		||||
	return g1_swp
 | 
			
		||||
 | 
			
		||||
# Operating Enviornment
 | 
			
		||||
#####
 | 
			
		||||
f0		= 28
 | 
			
		||||
bw0		= 8 # assumed tuning range (GHz)
 | 
			
		||||
bw_plt	= 4 # Plotting range (GHz)
 | 
			
		||||
fbw		= bw0/f0 # fractional bandwidth
 | 
			
		||||
class ampSystem:
 | 
			
		||||
	"""define global (hardware descriptive) variables for use in our system."""
 | 
			
		||||
	def __init__(self, quiet=False):
 | 
			
		||||
		self.f0		= 28 # design frequency (GHz)
 | 
			
		||||
		self.bw0	= 8 # assumed extreme tuning range (GHz)
 | 
			
		||||
		self.bw_plt	= 4 # Plotting range (GHz)
 | 
			
		||||
 | 
			
		||||
frequency_sweep_steps = 101
 | 
			
		||||
gamma_sweep_steps = 8
 | 
			
		||||
		# Configuration Of Hardware
 | 
			
		||||
		#####
 | 
			
		||||
		self.q1_L	= 25
 | 
			
		||||
		self.q1_C	= 8
 | 
			
		||||
		self.l1		= 140e-3 # nH
 | 
			
		||||
		self.gm1	= 25e-3 # S
 | 
			
		||||
 | 
			
		||||
gamma = 1 - np.power(f0 / (f0 + bw0/2),2)
 | 
			
		||||
gamma_limit_ratio = 0.99 # how close gamma can get to theoretical extreme
 | 
			
		||||
phase_limit_requested = (1-1/gamma_sweep_steps)*np.pi/2
 | 
			
		||||
		self._gamma_steps=8
 | 
			
		||||
		self._gamma_cap_ratio = 0.997
 | 
			
		||||
		self.alpha_min=1
 | 
			
		||||
		if not quiet:
 | 
			
		||||
			## Report System Descrption
 | 
			
		||||
			print('  L1 = %.3fpH, C1 = %.3ffF' % (1e3*self.l1, 1e6*self.c1))
 | 
			
		||||
			print('    Rp = %.3f Ohm' % (1/self.g1))
 | 
			
		||||
			print('    Q  = %.1f' % (self.Q1))
 | 
			
		||||
		self._gamma_warn = False
 | 
			
		||||
		
 | 
			
		||||
# Configuration Of Hardware
 | 
			
		||||
#####
 | 
			
		||||
q1_L	= 20
 | 
			
		||||
q1_C	= 7
 | 
			
		||||
l1		= 180e-3 # nH
 | 
			
		||||
gm1		= 25e-3 # S
 | 
			
		||||
		self._g1_map_function = g1_map_default
 | 
			
		||||
	
 | 
			
		||||
# Compute frequency sweep
 | 
			
		||||
#####
 | 
			
		||||
w0		= f0*2*np.pi
 | 
			
		||||
fbw_plt	= bw_plt/f0
 | 
			
		||||
delta	= np.linspace(-fbw_plt/2,fbw_plt/2,frequency_sweep_steps)
 | 
			
		||||
w		= w0*(1+delta)
 | 
			
		||||
f		= f0*(1+delta)
 | 
			
		||||
jw		= 1j*w
 | 
			
		||||
	@property
 | 
			
		||||
	def w0(self):
 | 
			
		||||
		return self.f0*2*np.pi
 | 
			
		||||
	@property
 | 
			
		||||
	def fbw(self): # fractional bandwidth
 | 
			
		||||
		return self.bw0/self.f0
 | 
			
		||||
	@property
 | 
			
		||||
	def phase_max(self):
 | 
			
		||||
		return np.pi/2 * (1 - 1/self.gamma_len)
 | 
			
		||||
 | 
			
		||||
	# Compute system 
 | 
			
		||||
	#####
 | 
			
		||||
	@property
 | 
			
		||||
	def c1(self):
 | 
			
		||||
		return 1/(self.w0*self.w0*self.l1)
 | 
			
		||||
	@property
 | 
			
		||||
	def g1(self):
 | 
			
		||||
		g1_L	= 1 / (self.q1_L*self.w0*self.l1)
 | 
			
		||||
		g1_C	= self.w0 * self.c1 / self.q1_C
 | 
			
		||||
		return g1_L + g1_C
 | 
			
		||||
	@property
 | 
			
		||||
	def Q1(self):
 | 
			
		||||
		return np.sqrt(self.c1/self.l1)/self.g1
 | 
			
		||||
 | 
			
		||||
	@property
 | 
			
		||||
	def gamma_len(self):
 | 
			
		||||
		return self._gamma_steps
 | 
			
		||||
 | 
			
		||||
	@property
 | 
			
		||||
	def gamma(self):
 | 
			
		||||
		gamma = 1 - np.power(self.f0 / (self.f0 + self.bw0/2),2)
 | 
			
		||||
		phase_limit_requested = (1-1/self.gamma_len)*np.pi/2
 | 
			
		||||
 | 
			
		||||
		# Verify gamma is valid
 | 
			
		||||
		#####
 | 
			
		||||
		gamma_max = 1/(self.alpha_min*self.Q1)
 | 
			
		||||
		if gamma > (self._gamma_cap_ratio * gamma_max):
 | 
			
		||||
			if not self._gamma_warn:
 | 
			
		||||
				self._gamma_warn = True
 | 
			
		||||
				print("==> WARN: Gamma to large, reset to %.1f%% (was %.1f%%) <==" % \
 | 
			
		||||
					(100*self._gamma_cap_ratio * gamma_max, 100*gamma))
 | 
			
		||||
			gamma = self._gamma_cap_ratio * gamma_max
 | 
			
		||||
		return gamma
 | 
			
		||||
 | 
			
		||||
	@property
 | 
			
		||||
	def alpha_swp(self):
 | 
			
		||||
		range_partial = np.ceil(self.gamma_len/2)
 | 
			
		||||
		lhs = np.linspace(np.sqrt(self.alpha_min),1, range_partial)
 | 
			
		||||
		rhs = np.flip(lhs,0)
 | 
			
		||||
		swp = np.concatenate((lhs,rhs[1:])) if np.mod(self.gamma_len,2) == 1 \
 | 
			
		||||
												else np.concatenate((lhs,rhs))
 | 
			
		||||
		return np.power(swp,2)
 | 
			
		||||
 | 
			
		||||
	@property
 | 
			
		||||
	def gamma_swp(self):
 | 
			
		||||
		return np.cos(np.pi/2-self.phase_swp) / self.Q1 / self.alpha_swp
 | 
			
		||||
	@property
 | 
			
		||||
	def phase_swp(self):
 | 
			
		||||
		#def phaseSweepGenerate(g1, gamma, c, l, phase_extreme, phase_steps):
 | 
			
		||||
		# Linear PHASE gamma spacing
 | 
			
		||||
		# First compute the most extreme phase given the extreme gamma
 | 
			
		||||
		# if gamma is tuned to the limit, and we want to match the gain performance,
 | 
			
		||||
		# then this is the required tuned g1 value.
 | 
			
		||||
		gamma = self.gamma
 | 
			
		||||
		g1_limit = np.sqrt(np.power(self.g1,2) - np.power(gamma,2)*self.c1/self.l1)
 | 
			
		||||
		# This implies a Q in that particular setting
 | 
			
		||||
		Q_limit = self.Q1*self.g1/g1_limit
 | 
			
		||||
		# given this !, I compute the delta phase at that point.
 | 
			
		||||
		phase_limit = np.pi/2 - np.arctan(1/(Q_limit*gamma))
 | 
			
		||||
 | 
			
		||||
		phase_swp = np.linspace(-1,1,self.gamma_len) * self.phase_max
 | 
			
		||||
 | 
			
		||||
		if phase_limit < self.phase_max:
 | 
			
		||||
			print(	"==> ERROR: Phase Beyond bounds. Some states will be ignored")
 | 
			
		||||
			print(	"           %.3f requested\n"
 | 
			
		||||
					"           %.3f hardware limit" % \
 | 
			
		||||
				(180/np.pi*self.phase_max, 180/np.pi*abs(phase_limit)))
 | 
			
		||||
			print(	"    To increase tuning range, gamma must rise or native Q must rise")
 | 
			
		||||
			phase_swp = np.where(phase_swp > phase_limit, phase_swp, np.NaN)
 | 
			
		||||
 | 
			
		||||
		# This gives us our equal phase spacing points
 | 
			
		||||
		return phase_swp
 | 
			
		||||
	
 | 
			
		||||
	@property
 | 
			
		||||
	def c1_swp(self):
 | 
			
		||||
		return self.c1 * (1 + self.gamma_swp)
 | 
			
		||||
		
 | 
			
		||||
	def set_g1_swp(self, g1_swp_function):
 | 
			
		||||
		self._g1_map_function = g1_swp_function
 | 
			
		||||
	
 | 
			
		||||
	@property
 | 
			
		||||
	def g1_swp(self):
 | 
			
		||||
		return self._g1_map_function(self)
 | 
			
		||||
	
 | 
			
		||||
	def compute_block(self, f_dat):
 | 
			
		||||
		g1_swp = self.g1_swp
 | 
			
		||||
		c1_swp = self.c1_swp
 | 
			
		||||
		y_tank	= np.zeros((self.gamma_len,f_dat.steps), dtype=complex)
 | 
			
		||||
		tf		= np.zeros((self.gamma_len,f_dat.steps), dtype=complex)
 | 
			
		||||
		for itune,gamma_tune in enumerate(self.gamma_swp):
 | 
			
		||||
			c1_tune = c1_swp[itune]
 | 
			
		||||
			g1_tune = g1_swp[itune]
 | 
			
		||||
			y_tank[itune,:] = g1_tune + f_dat.jw*c1_tune + 1/(f_dat.jw * self.l1)
 | 
			
		||||
			tf[itune,:] = self.__class__.tf_compute(f_dat.delta, gamma_tune, g1_tune, self.gm1, self.l1, self.c1)
 | 
			
		||||
 | 
			
		||||
		tf = tf.T
 | 
			
		||||
		return (y_tank, tf)
 | 
			
		||||
 | 
			
		||||
	def compute_ref(self, f_dat):
 | 
			
		||||
		y_tank = self.g1 + f_dat.jw*self.c1 + 1/(f_dat.jw * self.l1)
 | 
			
		||||
		tf = self.__class__.tf_compute(f_dat.delta, 0, self.g1, self.gm1, self.l1, self.c1)
 | 
			
		||||
		return (y_tank, tf)
 | 
			
		||||
	
 | 
			
		||||
	@classmethod
 | 
			
		||||
	def tf_compute(cls, delta, gamma, gx, gm, l, c):
 | 
			
		||||
		Q = np.sqrt(c/l)/gx
 | 
			
		||||
		return gm / gx \
 | 
			
		||||
			* 1j*(1+delta) \
 | 
			
		||||
			/ (1j*(1+delta) + Q*(1-np.power(1+delta,2)*(1+gamma)))
 | 
			
		||||
 | 
			
		||||
##################
 | 
			
		||||
# Compute system 
 | 
			
		||||
#####
 | 
			
		||||
c1		= 1/(w0*w0*l1)
 | 
			
		||||
g1_L	= 1 / (q1_L*w0*l1)
 | 
			
		||||
g1_C	= w0 * c1 / q1_C
 | 
			
		||||
g1		= g1_L + g1_C
 | 
			
		||||
 | 
			
		||||
# Verify gamma is valid
 | 
			
		||||
#####
 | 
			
		||||
gamma_max = g1 * np.sqrt(l1/c1)
 | 
			
		||||
if gamma > (gamma_limit_ratio * gamma_max):
 | 
			
		||||
	print("==> WARN: Gamma to large, reset to %.3f (was %.3f) <==" % \
 | 
			
		||||
		(gamma_limit_ratio * gamma_max, gamma))
 | 
			
		||||
	gamma = gamma_limit_ratio * gamma_max
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										52
									
								
								tankComputers.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										52
									
								
								tankComputers.py
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,52 @@
 | 
			
		|||
#!/usr/bin/env python3
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
################################################################################
 | 
			
		||||
# Define my helper functions.
 | 
			
		||||
def dB20(volt_tf):
 | 
			
		||||
	"""Describe signal gain of a transfer function in dB (i.e. 20log(x))"""
 | 
			
		||||
	return 20*np.log10(np.abs(volt_tf))
 | 
			
		||||
def ang(volt_tf):
 | 
			
		||||
	"""Describe phase of a transfer function in degrees. Not unwrapped."""
 | 
			
		||||
	return 180/np.pi*np.angle(volt_tf)
 | 
			
		||||
def ang_unwrap(volt_tf):
 | 
			
		||||
	"""Describe phase of a transfer function in degrees. With unwrapping."""
 | 
			
		||||
	return 180/np.pi*np.unwrap(np.angle(volt_tf))
 | 
			
		||||
def dB10(pwr_tf):
 | 
			
		||||
	"""Describe power gain of a transfer function in dB (i.e. 10log(x))"""
 | 
			
		||||
	return 10*np.log10(np.abs(pwr_tf))
 | 
			
		||||
	
 | 
			
		||||
def dB2Vlt(dB20_value):
 | 
			
		||||
	return np.power(10,dB20_value/20)
 | 
			
		||||
	
 | 
			
		||||
def wrap_rads(angles):
 | 
			
		||||
	return np.mod(angles+np.pi,2*np.pi)-np.pi
 | 
			
		||||
def atand(x):
 | 
			
		||||
	return 180/np.pi*np.arctan(x)
 | 
			
		||||
 | 
			
		||||
def rms_v_bw(err_sig, bandwidth_scale=1):
 | 
			
		||||
	"""compute the rms vs bandwidth assuming a fixed center frequency"""
 | 
			
		||||
	# First compute the error power
 | 
			
		||||
	err_pwr = np.power(np.abs(err_sig),2)
 | 
			
		||||
	steps = len(err_pwr)
 | 
			
		||||
	isodd = True if steps%2 != 0 else False
 | 
			
		||||
 | 
			
		||||
	# We want to generate the midpoint to the left, and midpoint to the right
 | 
			
		||||
	# as two distinct sets.
 | 
			
		||||
	pt_rhs_start = int(np.floor(steps/2))
 | 
			
		||||
	pt_lhs_stop = int(np.ceil(steps/2))
 | 
			
		||||
 | 
			
		||||
	folded = err_pwr[pt_rhs_start:] + np.flip(err_pwr[:pt_lhs_stop],0)
 | 
			
		||||
	# Now, we MIGHT have double counted the mid point
 | 
			
		||||
	# if the length is odd, correct for that
 | 
			
		||||
	if isodd: folded[0]*=0.5
 | 
			
		||||
 | 
			
		||||
	# Now we need an array that describes the number of points used to get here.
 | 
			
		||||
	# this one turns out to be pretty easy.
 | 
			
		||||
	frac_step = np.arange(int(not isodd),steps,2)/(steps-1)
 | 
			
		||||
	ind = 2*np.arange(0,frac_step.shape[0])+1+int(not isodd)
 | 
			
		||||
 | 
			
		||||
	# Now actually compute the RMS values. First do the running sum
 | 
			
		||||
	rms = np.sqrt(np.cumsum(folded,0) / (ind*np.ones((folded.shape[1],1))).T )
 | 
			
		||||
	return (frac_step*bandwidth_scale, rms)
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										144
									
								
								tankPlot.py
									
										
									
									
									
								
							
							
						
						
									
										144
									
								
								tankPlot.py
									
										
									
									
									
								
							| 
						 | 
				
			
			@ -10,25 +10,6 @@ sys.path.append("./pySmithPlot")
 | 
			
		|||
import smithplot
 | 
			
		||||
from smithplot import SmithAxes
 | 
			
		||||
 | 
			
		||||
################################################################################
 | 
			
		||||
# Define my helper functions.
 | 
			
		||||
def dB20(volt_tf):
 | 
			
		||||
	"""Describe signal gain of a transfer function in dB (i.e. 20log(x))"""
 | 
			
		||||
	return 20*np.log10(np.abs(volt_tf))
 | 
			
		||||
def ang(volt_tf):
 | 
			
		||||
	"""Describe phase of a transfer function in degrees. Not unwrapped."""
 | 
			
		||||
	return 180/np.pi*np.angle(volt_tf)
 | 
			
		||||
def ang_unwrap(volt_tf):
 | 
			
		||||
	"""Describe phase of a transfer function in degrees. With unwrapping."""
 | 
			
		||||
	return 180/np.pi*np.unwrap(np.angle(volt_tf))
 | 
			
		||||
def dB10(pwr_tf):
 | 
			
		||||
	"""Describe power gain of a transfer function in dB (i.e. 10log(x))"""
 | 
			
		||||
	return 10*np.log10(np.abs(pwr_tf))
 | 
			
		||||
	
 | 
			
		||||
def atan(x):
 | 
			
		||||
	return 180/np.pi*np.arctan(x)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
################################################################################
 | 
			
		||||
# Override the defaults for this script
 | 
			
		||||
rcParams['figure.figsize'] = [10,7]
 | 
			
		||||
| 
						 | 
				
			
			@ -36,76 +17,57 @@ default_window_position=['+20+80', '+120+80']
 | 
			
		|||
 | 
			
		||||
################################################################################
 | 
			
		||||
# Operating Enviornment (i.e. circuit parameters)
 | 
			
		||||
from TankGlobals import *
 | 
			
		||||
import TankGlobals
 | 
			
		||||
from FreqClass import FreqClass
 | 
			
		||||
from tankComputers import *
 | 
			
		||||
 | 
			
		||||
S=TankGlobals.ampSystem()
 | 
			
		||||
f=FreqClass(501, S.f0, S.bw_plt)
 | 
			
		||||
 | 
			
		||||
################################################################################
 | 
			
		||||
# Now generate the sweep of resonance tuning (gamma, and capacitance)
 | 
			
		||||
 | 
			
		||||
# Linear based gamma spacing
 | 
			
		||||
#gamma_swp = np.linspace(-gamma,gamma,gamma_sweep_steps)
 | 
			
		||||
 | 
			
		||||
# Linear PHASE gamma spacing
 | 
			
		||||
# First compute the most extreme phase given the extreme gamma
 | 
			
		||||
g1_limit = np.sqrt( g1*g1 - (gamma*gamma) * c1/l1  )
 | 
			
		||||
K_limit = np.sqrt(c1/l1)*1/g1_limit
 | 
			
		||||
phase_limit = np.mod(np.pi/2 - np.arctan( -1/K_limit * 1/gamma ),np.pi) - np.pi
 | 
			
		||||
 | 
			
		||||
if abs(phase_limit) < phase_limit_requested:
 | 
			
		||||
	print("==> WARN: Phase Beyond bounds, leaving at limits. <==")
 | 
			
		||||
	print("==> %.3f requested, but hardware limit is %.3f <==" % \
 | 
			
		||||
		(180/np.pi*phase_limit_requested, 180/np.pi*abs(phase_limit)))
 | 
			
		||||
	sys.exit(-1)
 | 
			
		||||
else:
 | 
			
		||||
	phase_limit = phase_limit_requested
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# This gives us our equal phase spacing points
 | 
			
		||||
phase_swp = np.linspace(-1,1,gamma_sweep_steps) * phase_limit
 | 
			
		||||
# Then use this to compute the gamma steps to produce arbitrary phase given
 | 
			
		||||
# our perfect gain constraint.
 | 
			
		||||
gamma_swp = np.sign(phase_swp)/np.sqrt(np.power(np.tan(np.pi/2 - phase_swp),2)+1) * g1 / np.sqrt(c1/l1)
 | 
			
		||||
# We want a smooth transition out to alpha. So For now assume a squares
 | 
			
		||||
# weighting out to the maximum alpha at the edges.
 | 
			
		||||
gain_variation = -8*0	# dB
 | 
			
		||||
S.alpha_min = dB2Vlt(gain_variation)
 | 
			
		||||
 | 
			
		||||
# compute correction factor for g1 that will produce common gain at f0
 | 
			
		||||
g1_swp = np.sqrt( g1*g1 - (gamma_swp*gamma_swp) * c1/l1  )
 | 
			
		||||
# this is defined as the class default
 | 
			
		||||
g1_swp = S.g1_swp
 | 
			
		||||
# and compute how much of a negative gm this requres, and it's relative
 | 
			
		||||
# proportion to the gm of the assumed main amplifier gm.
 | 
			
		||||
g1_boost = (g1_swp - g1)
 | 
			
		||||
g1_ratio = -g1_boost / gm1
 | 
			
		||||
g1_boost = (g1_swp - S.g1)
 | 
			
		||||
g1_ratio = -g1_boost / S.gm1
 | 
			
		||||
 | 
			
		||||
c1_swp = c1 * (1 + gamma_swp)
 | 
			
		||||
 | 
			
		||||
## Report System Descrption
 | 
			
		||||
print('  L1 = %.3fpH, C1 = %.3ffF' % (1e3*l1, 1e6*c1))
 | 
			
		||||
print('    Rp = %.3f Ohm' % (1/g1))
 | 
			
		||||
print('    Max G1 boost %.2fmS (%.1f%% of gm1)' % \
 | 
			
		||||
	(1e3*np.max(np.abs(g1_boost)), 100*np.max(g1_ratio)))
 | 
			
		||||
 | 
			
		||||
y_tank = np.zeros((len(gamma_swp),len(f)), dtype=complex)
 | 
			
		||||
tf = np.zeros((len(gamma_swp),len(f)), dtype=complex)
 | 
			
		||||
for itune,gamma_tune in enumerate(gamma_swp):
 | 
			
		||||
	c1_tune = c1_swp[itune]
 | 
			
		||||
	g1_tune = g1_swp[itune]
 | 
			
		||||
	K = np.sqrt(c1/l1)/g1_tune
 | 
			
		||||
	y_tank_tmp = g1_tune + jw*c1_tune + 1/(jw * l1)
 | 
			
		||||
	y_tank[itune,:] = y_tank_tmp
 | 
			
		||||
	tf_tmp = gm1 / g1_tune * \
 | 
			
		||||
		1j*(1+delta) / \
 | 
			
		||||
		( 1j*(1+delta) + K*(1 - (1+gamma_tune)*np.power(1+delta,2)) )
 | 
			
		||||
	tf[itune,:] = tf_tmp
 | 
			
		||||
 | 
			
		||||
tf = tf.T
 | 
			
		||||
################################################################################
 | 
			
		||||
# Generate a reference implementation
 | 
			
		||||
(y_tank, tf) = S.compute_block(f)
 | 
			
		||||
(_, tf_ref) = S.compute_ref(f)
 | 
			
		||||
# double to describe with perfect inversion stage
 | 
			
		||||
tf = np.column_stack((tf,-tf))
 | 
			
		||||
 | 
			
		||||
ref_index = int(gamma_swp.shape[0]/2)
 | 
			
		||||
tf_r = tf / (tf[:,ref_index]*np.ones((tf.shape[1],1))).T
 | 
			
		||||
y_tank = y_tank.T
 | 
			
		||||
# compute the relative transfer function thus giving us flat phase, and
 | 
			
		||||
# flat (ideally) gain response if our system perfectly matches the reference
 | 
			
		||||
tf_r = tf / (tf_ref*np.ones((tf.shape[1],1))).T
 | 
			
		||||
 | 
			
		||||
# We will also do a direct angle comparison
 | 
			
		||||
tf_r_ang_ideal = wrap_rads(np.concatenate((-S.phase_swp, -np.pi - S.phase_swp)))
 | 
			
		||||
tf_r_ang = np.angle(tf_r)
 | 
			
		||||
tf_r_ang_rms = np.sqrt(np.mean(np.power(tf_r_ang-tf_r_ang_ideal,2),0))
 | 
			
		||||
 | 
			
		||||
y_tank = y_tank.T
 | 
			
		||||
################################################################################
 | 
			
		||||
# Compute RMS phase error relative to ideal reference across plotting bandwidth
 | 
			
		||||
(bw_ang, rms_ang_swp)=rms_v_bw(tf_r_ang-tf_r_ang_ideal, S.bw_plt)
 | 
			
		||||
(bw_mag, rms_gain_swp)=rms_v_bw(tf_r, S.bw_plt)
 | 
			
		||||
 | 
			
		||||
print(ang(tf[f==28,:]))
 | 
			
		||||
################################################################################
 | 
			
		||||
 | 
			
		||||
h1 = pp.figure()
 | 
			
		||||
h2 = pp.figure(figsize=(5,7))
 | 
			
		||||
h3 = pp.figure(figsize=(5,7))
 | 
			
		||||
mgr = pp.get_current_fig_manager()
 | 
			
		||||
################################################################################
 | 
			
		||||
ax1 = h1.add_subplot(2,2,1, projection='smith')
 | 
			
		||||
| 
						 | 
				
			
			@ -115,14 +77,19 @@ ax4 = h1.add_subplot(2,2,4)
 | 
			
		|||
 | 
			
		||||
ax1.plot(y_tank, datatype=SmithAxes.Y_PARAMETER, marker="None")
 | 
			
		||||
ax2.plot(np.angle(tf), dB20(tf))
 | 
			
		||||
ax3.plot(f,dB20(tf))
 | 
			
		||||
ax4.plot(f,ang_unwrap(tf))
 | 
			
		||||
ax3.plot(f.hz,dB20(tf))
 | 
			
		||||
ax4.plot(f.hz,ang_unwrap(tf))
 | 
			
		||||
 | 
			
		||||
################################################################################
 | 
			
		||||
ax8 = h2.add_subplot(2,1,1)
 | 
			
		||||
ax9 = h2.add_subplot(2,1,2)
 | 
			
		||||
ax8.plot(f,dB20(tf_r))
 | 
			
		||||
ax9.plot(f,ang_unwrap(tf_r.T).T)
 | 
			
		||||
ax6 = h2.add_subplot(2,1,1)
 | 
			
		||||
ax7 = h2.add_subplot(2,1,2)
 | 
			
		||||
ax6.plot(f.hz,dB20(tf_r))
 | 
			
		||||
ax7.plot(f.hz,ang_unwrap(tf_r.T).T)
 | 
			
		||||
 | 
			
		||||
ax8 = h3.add_subplot(2,1,1)
 | 
			
		||||
ax9 = h3.add_subplot(2,1,2)
 | 
			
		||||
ax8.plot(bw_mag,dB20(rms_gain_swp))
 | 
			
		||||
ax9.plot(bw_ang,rms_ang_swp*180/np.pi)
 | 
			
		||||
 | 
			
		||||
ax1.set_title('Tank Impedance')
 | 
			
		||||
ax2.set_title('Transfer Function')
 | 
			
		||||
| 
						 | 
				
			
			@ -131,20 +98,31 @@ ax3.set_title('TF Gain')
 | 
			
		|||
ax3.set_ylabel('Gain (dB)')
 | 
			
		||||
ax4.set_title('TF Phase')
 | 
			
		||||
ax4.set_ylabel('Phase (deg)')
 | 
			
		||||
ax8.set_title('TF Relative Gain')
 | 
			
		||||
ax8.set_ylabel('Relative Gain (dB)')
 | 
			
		||||
ax9.set_title('TF Relative Phase')
 | 
			
		||||
ax9.set_ylabel('Relative Phase (deg)')
 | 
			
		||||
for ax_T in [ax3, ax4, ax8, ax9]:
 | 
			
		||||
ax6.set_title('TF Relative Gain')
 | 
			
		||||
ax6.set_ylabel('Relative Gain (dB)')
 | 
			
		||||
ax7.set_title('TF Relative Phase')
 | 
			
		||||
ax7.set_ylabel('Relative Phase (deg)')
 | 
			
		||||
for ax_T in [ax3, ax4, ax6, ax7]:
 | 
			
		||||
	ax_T.grid()
 | 
			
		||||
	ax_T.set_xlabel('Freq (GHz)')
 | 
			
		||||
	ax_T.set_xlim(( np.min(f), np.max(f) ))
 | 
			
		||||
	ax_T.set_xlim(f.hz_range)
 | 
			
		||||
 | 
			
		||||
ax8.set_title('RMS Gain Error')
 | 
			
		||||
ax8.set_ylabel('RMS Gain Error (dB)')
 | 
			
		||||
ax9.set_title('RMS Phase Error')
 | 
			
		||||
ax9.set_ylabel('RMS Phase Error (deg)')
 | 
			
		||||
for ax_T in [ax8, ax9]:
 | 
			
		||||
	ax_T.grid()
 | 
			
		||||
	ax_T.set_xlim((0,S.bw_plt))
 | 
			
		||||
	ax_T.set_xlabel('Bandwidth (GHz)')
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
################################################################################
 | 
			
		||||
h1.tight_layout()
 | 
			
		||||
h2.tight_layout()
 | 
			
		||||
h3.tight_layout()
 | 
			
		||||
mgr.window.geometry(default_window_position[0])
 | 
			
		||||
h1.show()
 | 
			
		||||
mgr.window.geometry(default_window_position[1])
 | 
			
		||||
h2.show()
 | 
			
		||||
h3.show()
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue