Major refactor to ease duplicate computations and plotting
This commit is contained in:
parent
d6d75b804f
commit
539c2f7481
4 changed files with 326 additions and 120 deletions
144
tankPlot.py
144
tankPlot.py
|
@ -10,25 +10,6 @@ sys.path.append("./pySmithPlot")
|
|||
import smithplot
|
||||
from smithplot import SmithAxes
|
||||
|
||||
################################################################################
|
||||
# Define my helper functions.
|
||||
def dB20(volt_tf):
|
||||
"""Describe signal gain of a transfer function in dB (i.e. 20log(x))"""
|
||||
return 20*np.log10(np.abs(volt_tf))
|
||||
def ang(volt_tf):
|
||||
"""Describe phase of a transfer function in degrees. Not unwrapped."""
|
||||
return 180/np.pi*np.angle(volt_tf)
|
||||
def ang_unwrap(volt_tf):
|
||||
"""Describe phase of a transfer function in degrees. With unwrapping."""
|
||||
return 180/np.pi*np.unwrap(np.angle(volt_tf))
|
||||
def dB10(pwr_tf):
|
||||
"""Describe power gain of a transfer function in dB (i.e. 10log(x))"""
|
||||
return 10*np.log10(np.abs(pwr_tf))
|
||||
|
||||
def atan(x):
|
||||
return 180/np.pi*np.arctan(x)
|
||||
|
||||
|
||||
################################################################################
|
||||
# Override the defaults for this script
|
||||
rcParams['figure.figsize'] = [10,7]
|
||||
|
@ -36,76 +17,57 @@ default_window_position=['+20+80', '+120+80']
|
|||
|
||||
################################################################################
|
||||
# Operating Enviornment (i.e. circuit parameters)
|
||||
from TankGlobals import *
|
||||
import TankGlobals
|
||||
from FreqClass import FreqClass
|
||||
from tankComputers import *
|
||||
|
||||
S=TankGlobals.ampSystem()
|
||||
f=FreqClass(501, S.f0, S.bw_plt)
|
||||
|
||||
################################################################################
|
||||
# Now generate the sweep of resonance tuning (gamma, and capacitance)
|
||||
|
||||
# Linear based gamma spacing
|
||||
#gamma_swp = np.linspace(-gamma,gamma,gamma_sweep_steps)
|
||||
|
||||
# Linear PHASE gamma spacing
|
||||
# First compute the most extreme phase given the extreme gamma
|
||||
g1_limit = np.sqrt( g1*g1 - (gamma*gamma) * c1/l1 )
|
||||
K_limit = np.sqrt(c1/l1)*1/g1_limit
|
||||
phase_limit = np.mod(np.pi/2 - np.arctan( -1/K_limit * 1/gamma ),np.pi) - np.pi
|
||||
|
||||
if abs(phase_limit) < phase_limit_requested:
|
||||
print("==> WARN: Phase Beyond bounds, leaving at limits. <==")
|
||||
print("==> %.3f requested, but hardware limit is %.3f <==" % \
|
||||
(180/np.pi*phase_limit_requested, 180/np.pi*abs(phase_limit)))
|
||||
sys.exit(-1)
|
||||
else:
|
||||
phase_limit = phase_limit_requested
|
||||
|
||||
|
||||
# This gives us our equal phase spacing points
|
||||
phase_swp = np.linspace(-1,1,gamma_sweep_steps) * phase_limit
|
||||
# Then use this to compute the gamma steps to produce arbitrary phase given
|
||||
# our perfect gain constraint.
|
||||
gamma_swp = np.sign(phase_swp)/np.sqrt(np.power(np.tan(np.pi/2 - phase_swp),2)+1) * g1 / np.sqrt(c1/l1)
|
||||
# We want a smooth transition out to alpha. So For now assume a squares
|
||||
# weighting out to the maximum alpha at the edges.
|
||||
gain_variation = -8*0 # dB
|
||||
S.alpha_min = dB2Vlt(gain_variation)
|
||||
|
||||
# compute correction factor for g1 that will produce common gain at f0
|
||||
g1_swp = np.sqrt( g1*g1 - (gamma_swp*gamma_swp) * c1/l1 )
|
||||
# this is defined as the class default
|
||||
g1_swp = S.g1_swp
|
||||
# and compute how much of a negative gm this requres, and it's relative
|
||||
# proportion to the gm of the assumed main amplifier gm.
|
||||
g1_boost = (g1_swp - g1)
|
||||
g1_ratio = -g1_boost / gm1
|
||||
g1_boost = (g1_swp - S.g1)
|
||||
g1_ratio = -g1_boost / S.gm1
|
||||
|
||||
c1_swp = c1 * (1 + gamma_swp)
|
||||
|
||||
## Report System Descrption
|
||||
print(' L1 = %.3fpH, C1 = %.3ffF' % (1e3*l1, 1e6*c1))
|
||||
print(' Rp = %.3f Ohm' % (1/g1))
|
||||
print(' Max G1 boost %.2fmS (%.1f%% of gm1)' % \
|
||||
(1e3*np.max(np.abs(g1_boost)), 100*np.max(g1_ratio)))
|
||||
|
||||
y_tank = np.zeros((len(gamma_swp),len(f)), dtype=complex)
|
||||
tf = np.zeros((len(gamma_swp),len(f)), dtype=complex)
|
||||
for itune,gamma_tune in enumerate(gamma_swp):
|
||||
c1_tune = c1_swp[itune]
|
||||
g1_tune = g1_swp[itune]
|
||||
K = np.sqrt(c1/l1)/g1_tune
|
||||
y_tank_tmp = g1_tune + jw*c1_tune + 1/(jw * l1)
|
||||
y_tank[itune,:] = y_tank_tmp
|
||||
tf_tmp = gm1 / g1_tune * \
|
||||
1j*(1+delta) / \
|
||||
( 1j*(1+delta) + K*(1 - (1+gamma_tune)*np.power(1+delta,2)) )
|
||||
tf[itune,:] = tf_tmp
|
||||
|
||||
tf = tf.T
|
||||
################################################################################
|
||||
# Generate a reference implementation
|
||||
(y_tank, tf) = S.compute_block(f)
|
||||
(_, tf_ref) = S.compute_ref(f)
|
||||
# double to describe with perfect inversion stage
|
||||
tf = np.column_stack((tf,-tf))
|
||||
|
||||
ref_index = int(gamma_swp.shape[0]/2)
|
||||
tf_r = tf / (tf[:,ref_index]*np.ones((tf.shape[1],1))).T
|
||||
y_tank = y_tank.T
|
||||
# compute the relative transfer function thus giving us flat phase, and
|
||||
# flat (ideally) gain response if our system perfectly matches the reference
|
||||
tf_r = tf / (tf_ref*np.ones((tf.shape[1],1))).T
|
||||
|
||||
# We will also do a direct angle comparison
|
||||
tf_r_ang_ideal = wrap_rads(np.concatenate((-S.phase_swp, -np.pi - S.phase_swp)))
|
||||
tf_r_ang = np.angle(tf_r)
|
||||
tf_r_ang_rms = np.sqrt(np.mean(np.power(tf_r_ang-tf_r_ang_ideal,2),0))
|
||||
|
||||
y_tank = y_tank.T
|
||||
################################################################################
|
||||
# Compute RMS phase error relative to ideal reference across plotting bandwidth
|
||||
(bw_ang, rms_ang_swp)=rms_v_bw(tf_r_ang-tf_r_ang_ideal, S.bw_plt)
|
||||
(bw_mag, rms_gain_swp)=rms_v_bw(tf_r, S.bw_plt)
|
||||
|
||||
print(ang(tf[f==28,:]))
|
||||
################################################################################
|
||||
|
||||
h1 = pp.figure()
|
||||
h2 = pp.figure(figsize=(5,7))
|
||||
h3 = pp.figure(figsize=(5,7))
|
||||
mgr = pp.get_current_fig_manager()
|
||||
################################################################################
|
||||
ax1 = h1.add_subplot(2,2,1, projection='smith')
|
||||
|
@ -115,14 +77,19 @@ ax4 = h1.add_subplot(2,2,4)
|
|||
|
||||
ax1.plot(y_tank, datatype=SmithAxes.Y_PARAMETER, marker="None")
|
||||
ax2.plot(np.angle(tf), dB20(tf))
|
||||
ax3.plot(f,dB20(tf))
|
||||
ax4.plot(f,ang_unwrap(tf))
|
||||
ax3.plot(f.hz,dB20(tf))
|
||||
ax4.plot(f.hz,ang_unwrap(tf))
|
||||
|
||||
################################################################################
|
||||
ax8 = h2.add_subplot(2,1,1)
|
||||
ax9 = h2.add_subplot(2,1,2)
|
||||
ax8.plot(f,dB20(tf_r))
|
||||
ax9.plot(f,ang_unwrap(tf_r.T).T)
|
||||
ax6 = h2.add_subplot(2,1,1)
|
||||
ax7 = h2.add_subplot(2,1,2)
|
||||
ax6.plot(f.hz,dB20(tf_r))
|
||||
ax7.plot(f.hz,ang_unwrap(tf_r.T).T)
|
||||
|
||||
ax8 = h3.add_subplot(2,1,1)
|
||||
ax9 = h3.add_subplot(2,1,2)
|
||||
ax8.plot(bw_mag,dB20(rms_gain_swp))
|
||||
ax9.plot(bw_ang,rms_ang_swp*180/np.pi)
|
||||
|
||||
ax1.set_title('Tank Impedance')
|
||||
ax2.set_title('Transfer Function')
|
||||
|
@ -131,20 +98,31 @@ ax3.set_title('TF Gain')
|
|||
ax3.set_ylabel('Gain (dB)')
|
||||
ax4.set_title('TF Phase')
|
||||
ax4.set_ylabel('Phase (deg)')
|
||||
ax8.set_title('TF Relative Gain')
|
||||
ax8.set_ylabel('Relative Gain (dB)')
|
||||
ax9.set_title('TF Relative Phase')
|
||||
ax9.set_ylabel('Relative Phase (deg)')
|
||||
for ax_T in [ax3, ax4, ax8, ax9]:
|
||||
ax6.set_title('TF Relative Gain')
|
||||
ax6.set_ylabel('Relative Gain (dB)')
|
||||
ax7.set_title('TF Relative Phase')
|
||||
ax7.set_ylabel('Relative Phase (deg)')
|
||||
for ax_T in [ax3, ax4, ax6, ax7]:
|
||||
ax_T.grid()
|
||||
ax_T.set_xlabel('Freq (GHz)')
|
||||
ax_T.set_xlim(( np.min(f), np.max(f) ))
|
||||
ax_T.set_xlim(f.hz_range)
|
||||
|
||||
ax8.set_title('RMS Gain Error')
|
||||
ax8.set_ylabel('RMS Gain Error (dB)')
|
||||
ax9.set_title('RMS Phase Error')
|
||||
ax9.set_ylabel('RMS Phase Error (deg)')
|
||||
for ax_T in [ax8, ax9]:
|
||||
ax_T.grid()
|
||||
ax_T.set_xlim((0,S.bw_plt))
|
||||
ax_T.set_xlabel('Bandwidth (GHz)')
|
||||
|
||||
|
||||
################################################################################
|
||||
h1.tight_layout()
|
||||
h2.tight_layout()
|
||||
h3.tight_layout()
|
||||
mgr.window.geometry(default_window_position[0])
|
||||
h1.show()
|
||||
mgr.window.geometry(default_window_position[1])
|
||||
h2.show()
|
||||
h3.show()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue